Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221095493> ?p ?o ?g. }
- W4221095493 abstract "In structural health monitoring of bridges, machine learning algorithms for damage detection are typically trained using an unsupervised learning strategy, with data gathered from monitoring systems, and assuming the structures are undamaged and functioning under normal operational conditions during a certain period of time. However, the scarcity of information regarding the structural response under seasonal environmental variations and less frequent operational conditions makes the distinction between these undamaged states and damaged ones very challenging and may cause damage detection algorithms to yield false indications. To overcome this limitation, hybrid approaches for the training of machine learning algorithms have recently been proposed. Rather than relying exclusively on monitoring data, hybrid approaches use finite element models of the structure to generate numerical data for less frequent undamaged scenarios. The numerical data are used for the training of machine learning algorithms together with the monitoring data. This paper addresses the reliability of numerical data for the training of machine learning algorithms by quantifying the damage detection performance of an algorithm trained with numerical data only. Monitoring data are used only for the initial calibration of the finite element model, which does not need to be exceedingly detailed, as the probabilistic variation of the uncertain parameters is considered. The damage detection performance is quantified both in terms of quality (number of ill-classified observations) and robustness to sub-optimal choices of the training data and algorithmic parameters. A general procedure for the generation of model-based data for the training of machine learning algorithms to detect damage is given and validated using the well-known Z-24 Bridge benchmark." @default.
- W4221095493 created "2022-04-03" @default.
- W4221095493 creator A5025614673 @default.
- W4221095493 creator A5040870901 @default.
- W4221095493 creator A5051673090 @default.
- W4221095493 creator A5063092770 @default.
- W4221095493 creator A5066784379 @default.
- W4221095493 date "2022-03-05" @default.
- W4221095493 modified "2023-10-14" @default.
- W4221095493 title "Reliability of probabilistic numerical data for training machine learning algorithms to detect damage in bridges" @default.
- W4221095493 cites W1973513707 @default.
- W4221095493 cites W1977220071 @default.
- W4221095493 cites W2015846061 @default.
- W4221095493 cites W2028885777 @default.
- W4221095493 cites W2049633694 @default.
- W4221095493 cites W2102175259 @default.
- W4221095493 cites W2147926935 @default.
- W4221095493 cites W2150869884 @default.
- W4221095493 cites W2225888838 @default.
- W4221095493 cites W2330668423 @default.
- W4221095493 cites W2411806343 @default.
- W4221095493 cites W2477834368 @default.
- W4221095493 cites W2488678869 @default.
- W4221095493 cites W2618150381 @default.
- W4221095493 cites W2766685093 @default.
- W4221095493 cites W2887043973 @default.
- W4221095493 cites W2891548105 @default.
- W4221095493 cites W2985484367 @default.
- W4221095493 cites W4247163197 @default.
- W4221095493 cites W4252794826 @default.
- W4221095493 doi "https://doi.org/10.1002/stc.2950" @default.
- W4221095493 hasPublicationYear "2022" @default.
- W4221095493 type Work @default.
- W4221095493 citedByCount "7" @default.
- W4221095493 countsByYear W42210954932022 @default.
- W4221095493 countsByYear W42210954932023 @default.
- W4221095493 crossrefType "journal-article" @default.
- W4221095493 hasAuthorship W4221095493A5025614673 @default.
- W4221095493 hasAuthorship W4221095493A5040870901 @default.
- W4221095493 hasAuthorship W4221095493A5051673090 @default.
- W4221095493 hasAuthorship W4221095493A5063092770 @default.
- W4221095493 hasAuthorship W4221095493A5066784379 @default.
- W4221095493 hasBestOaLocation W42210954931 @default.
- W4221095493 hasConcept C104317684 @default.
- W4221095493 hasConcept C11413529 @default.
- W4221095493 hasConcept C119599485 @default.
- W4221095493 hasConcept C119857082 @default.
- W4221095493 hasConcept C121332964 @default.
- W4221095493 hasConcept C124101348 @default.
- W4221095493 hasConcept C127413603 @default.
- W4221095493 hasConcept C135628077 @default.
- W4221095493 hasConcept C154945302 @default.
- W4221095493 hasConcept C163258240 @default.
- W4221095493 hasConcept C185592680 @default.
- W4221095493 hasConcept C24404364 @default.
- W4221095493 hasConcept C2775846686 @default.
- W4221095493 hasConcept C2776247918 @default.
- W4221095493 hasConcept C41008148 @default.
- W4221095493 hasConcept C43214815 @default.
- W4221095493 hasConcept C49937458 @default.
- W4221095493 hasConcept C55493867 @default.
- W4221095493 hasConcept C62520636 @default.
- W4221095493 hasConcept C63479239 @default.
- W4221095493 hasConcept C66938386 @default.
- W4221095493 hasConceptScore W4221095493C104317684 @default.
- W4221095493 hasConceptScore W4221095493C11413529 @default.
- W4221095493 hasConceptScore W4221095493C119599485 @default.
- W4221095493 hasConceptScore W4221095493C119857082 @default.
- W4221095493 hasConceptScore W4221095493C121332964 @default.
- W4221095493 hasConceptScore W4221095493C124101348 @default.
- W4221095493 hasConceptScore W4221095493C127413603 @default.
- W4221095493 hasConceptScore W4221095493C135628077 @default.
- W4221095493 hasConceptScore W4221095493C154945302 @default.
- W4221095493 hasConceptScore W4221095493C163258240 @default.
- W4221095493 hasConceptScore W4221095493C185592680 @default.
- W4221095493 hasConceptScore W4221095493C24404364 @default.
- W4221095493 hasConceptScore W4221095493C2775846686 @default.
- W4221095493 hasConceptScore W4221095493C2776247918 @default.
- W4221095493 hasConceptScore W4221095493C41008148 @default.
- W4221095493 hasConceptScore W4221095493C43214815 @default.
- W4221095493 hasConceptScore W4221095493C49937458 @default.
- W4221095493 hasConceptScore W4221095493C55493867 @default.
- W4221095493 hasConceptScore W4221095493C62520636 @default.
- W4221095493 hasConceptScore W4221095493C63479239 @default.
- W4221095493 hasConceptScore W4221095493C66938386 @default.
- W4221095493 hasFunder F4320334779 @default.
- W4221095493 hasIssue "7" @default.
- W4221095493 hasLocation W42210954931 @default.
- W4221095493 hasOpenAccess W4221095493 @default.
- W4221095493 hasPrimaryLocation W42210954931 @default.
- W4221095493 hasRelatedWork W1589540137 @default.
- W4221095493 hasRelatedWork W1967161913 @default.
- W4221095493 hasRelatedWork W2079440433 @default.
- W4221095493 hasRelatedWork W2092456686 @default.
- W4221095493 hasRelatedWork W2212155158 @default.
- W4221095493 hasRelatedWork W2370348022 @default.
- W4221095493 hasRelatedWork W2374239309 @default.
- W4221095493 hasRelatedWork W2744864495 @default.
- W4221095493 hasRelatedWork W3153365617 @default.
- W4221095493 hasRelatedWork W4250282356 @default.