Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221097918> ?p ?o ?g. }
- W4221097918 abstract "Developing machine learning models to support health analytics requires increased understanding about statistical properties of self-rated expression statements used in health-related communication and decision making. To address this, our current research analyzes self-rated expression statements concerning the coronavirus COVID-19 epidemic and with a new methodology identifies how statistically significant differences between groups of respondents can be linked to machine learning results.A quantitative cross-sectional study gathering the need for help ratings for twenty health-related expression statements concerning the coronavirus epidemic on an 11-point Likert scale, and nine answers about the person's health and wellbeing, sex and age. The study involved online respondents between 30 May and 3 August 2020 recruited from Finnish patient and disabled people's organizations, other health-related organizations and professionals, and educational institutions (n = 673). We propose and experimentally motivate a new methodology of influence analysis concerning machine learning to be applied for evaluating how machine learning results depend on and are influenced by various properties of the data which are identified with traditional statistical methods.We found statistically significant Kendall rank-correlations and high cosine similarity values between various health-related expression statement pairs concerning the need for help ratings and a background question pair. With tests of Wilcoxon rank-sum, Kruskal-Wallis and one-way analysis of variance (ANOVA) between groups we identified statistically significant rating differences for several health-related expression statements in respect to groupings based on the answer values of background questions, such as the ratings of suspecting to have the coronavirus infection and having it depending on the estimated health condition, quality of life and sex. Our new methodology enabled us to identify how statistically significant rating differences were linked to machine learning results thus helping to develop better human-understandable machine learning models.The self-rated need for help concerning health-related expression statements differs statistically significantly depending on the person's background information, such as his/her estimated health condition, quality of life and sex. With our new methodology statistically significant rating differences can be linked to machine learning results thus enabling to develop better machine learning to identify, interpret and address the patient's needs for well-personalized care." @default.
- W4221097918 created "2022-04-03" @default.
- W4221097918 creator A5036258108 @default.
- W4221097918 date "2022-03-06" @default.
- W4221097918 modified "2023-10-10" @default.
- W4221097918 title "Detecting the patient’s need for help with machine learning based on expressions" @default.
- W4221097918 cites W1489186632 @default.
- W4221097918 cites W2001097956 @default.
- W4221097918 cites W2023736093 @default.
- W4221097918 cites W2024830976 @default.
- W4221097918 cites W2034535786 @default.
- W4221097918 cites W2041029272 @default.
- W4221097918 cites W2044275082 @default.
- W4221097918 cites W2057902667 @default.
- W4221097918 cites W2065102920 @default.
- W4221097918 cites W2103623293 @default.
- W4221097918 cites W2108629469 @default.
- W4221097918 cites W2117688051 @default.
- W4221097918 cites W2128294552 @default.
- W4221097918 cites W2134888862 @default.
- W4221097918 cites W2148042430 @default.
- W4221097918 cites W2160662805 @default.
- W4221097918 cites W2177870565 @default.
- W4221097918 cites W2278349151 @default.
- W4221097918 cites W2279238465 @default.
- W4221097918 cites W2328867062 @default.
- W4221097918 cites W2486859700 @default.
- W4221097918 cites W2789244308 @default.
- W4221097918 cites W2798703331 @default.
- W4221097918 cites W2801702920 @default.
- W4221097918 cites W2843010082 @default.
- W4221097918 cites W2886368623 @default.
- W4221097918 cites W2902516827 @default.
- W4221097918 cites W2908470390 @default.
- W4221097918 cites W2914904419 @default.
- W4221097918 cites W2951002500 @default.
- W4221097918 cites W2952204736 @default.
- W4221097918 cites W2963126915 @default.
- W4221097918 cites W2963492323 @default.
- W4221097918 cites W2994401446 @default.
- W4221097918 cites W3000776193 @default.
- W4221097918 cites W3010749116 @default.
- W4221097918 cites W3016279248 @default.
- W4221097918 cites W3021626742 @default.
- W4221097918 cites W3027425415 @default.
- W4221097918 cites W3027439624 @default.
- W4221097918 cites W3035119815 @default.
- W4221097918 cites W321157207 @default.
- W4221097918 doi "https://doi.org/10.1186/s12874-021-01502-8" @default.
- W4221097918 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35249538" @default.
- W4221097918 hasPublicationYear "2022" @default.
- W4221097918 type Work @default.
- W4221097918 citedByCount "0" @default.
- W4221097918 crossrefType "journal-article" @default.
- W4221097918 hasAuthorship W4221097918A5036258108 @default.
- W4221097918 hasBestOaLocation W42210979181 @default.
- W4221097918 hasConcept C103278499 @default.
- W4221097918 hasConcept C105776082 @default.
- W4221097918 hasConcept C114614502 @default.
- W4221097918 hasConcept C115961682 @default.
- W4221097918 hasConcept C119857082 @default.
- W4221097918 hasConcept C138496976 @default.
- W4221097918 hasConcept C154945302 @default.
- W4221097918 hasConcept C15744967 @default.
- W4221097918 hasConcept C164226766 @default.
- W4221097918 hasConcept C33923547 @default.
- W4221097918 hasConcept C41008148 @default.
- W4221097918 hasConcept C509550671 @default.
- W4221097918 hasConcept C71924100 @default.
- W4221097918 hasConcept C75630572 @default.
- W4221097918 hasConcept C83849319 @default.
- W4221097918 hasConceptScore W4221097918C103278499 @default.
- W4221097918 hasConceptScore W4221097918C105776082 @default.
- W4221097918 hasConceptScore W4221097918C114614502 @default.
- W4221097918 hasConceptScore W4221097918C115961682 @default.
- W4221097918 hasConceptScore W4221097918C119857082 @default.
- W4221097918 hasConceptScore W4221097918C138496976 @default.
- W4221097918 hasConceptScore W4221097918C154945302 @default.
- W4221097918 hasConceptScore W4221097918C15744967 @default.
- W4221097918 hasConceptScore W4221097918C164226766 @default.
- W4221097918 hasConceptScore W4221097918C33923547 @default.
- W4221097918 hasConceptScore W4221097918C41008148 @default.
- W4221097918 hasConceptScore W4221097918C509550671 @default.
- W4221097918 hasConceptScore W4221097918C71924100 @default.
- W4221097918 hasConceptScore W4221097918C75630572 @default.
- W4221097918 hasConceptScore W4221097918C83849319 @default.
- W4221097918 hasIssue "1" @default.
- W4221097918 hasLocation W42210979181 @default.
- W4221097918 hasLocation W42210979182 @default.
- W4221097918 hasLocation W42210979183 @default.
- W4221097918 hasLocation W42210979184 @default.
- W4221097918 hasLocation W42210979185 @default.
- W4221097918 hasOpenAccess W4221097918 @default.
- W4221097918 hasPrimaryLocation W42210979181 @default.
- W4221097918 hasRelatedWork W1994403167 @default.
- W4221097918 hasRelatedWork W2049186813 @default.
- W4221097918 hasRelatedWork W2078351977 @default.
- W4221097918 hasRelatedWork W2552556638 @default.
- W4221097918 hasRelatedWork W2748952813 @default.
- W4221097918 hasRelatedWork W2899084033 @default.