Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221098061> ?p ?o ?g. }
- W4221098061 endingPage "238146832210866" @default.
- W4221098061 startingPage "238146832210866" @default.
- W4221098061 abstract "Background. Medical students often have problems with Bayesian reasoning situations. Representing statistical information as natural frequencies (instead of probabilities) and visualizing them (e.g., with double-trees or net diagrams) leads to higher accuracy in solving these tasks. However, double-trees and net diagrams (which already contain the correct solution of the task, so that the solution could be read of the diagrams) have not yet been studied in medical education. This study examined the influence of information format (probabilities v. frequencies) and visualization (double-tree v. net diagram) on the accuracy and speed of Bayesian judgments. Methods. A total of 142 medical students at different university medical schools (Munich, Kiel, Goettingen, Erlangen, Nuremberg, Berlin, Regensburg) in Germany predicted posterior probabilities in 4 different medical Bayesian reasoning tasks, resulting in a 3-factorial 2 × 2 × 4 design. The diagnostic efficiency for the different versions was represented as the median time divided by the percentage of correct inferences. Results. Frequency visualizations led to a significantly higher accuracy and faster judgments than did probability visualizations. Participants solved 80% of the tasks correctly in the frequency double-tree and the frequency net diagram. Visualizations with probabilities also led to relatively high performance rates: 73% in the probability double-tree and 70% in the probability net diagram. The median time for a correct inference was fastest with the frequency double tree (2:08 min) followed by the frequency net diagram and the probability double-tree (both 2:26 min) and probability net diagram (2:33 min). The type of visualization did not result in a significant difference. Discussion. Frequency double-trees and frequency net diagrams help answer Bayesian tasks more accurately and also more quickly than the respective probability visualizations. Surprisingly, the effect of information format (probabilities v. frequencies) on performance was higher in previous studies: medical students seem also quite capable of identifying the correct solution to the Bayesian task, among other probabilities in the probability visualizations.Frequency double-trees and frequency nets help answer Bayesian tasks not only more accurately but also more quickly than the respective probability visualizations.In double-trees and net diagrams, the effect of the information format (probabilities v. natural frequencies) on performance is remarkably lower in this high-performing sample than that shown in previous studies." @default.
- W4221098061 created "2022-04-03" @default.
- W4221098061 creator A5001664010 @default.
- W4221098061 creator A5017793957 @default.
- W4221098061 creator A5019313636 @default.
- W4221098061 creator A5039379973 @default.
- W4221098061 creator A5065828034 @default.
- W4221098061 creator A5079815565 @default.
- W4221098061 date "2022-01-01" @default.
- W4221098061 modified "2023-09-25" @default.
- W4221098061 title "Improving Diagnostic Efficiency with Frequency Double-Trees and Frequency Nets in Bayesian Reasoning" @default.
- W4221098061 cites W1542200596 @default.
- W4221098061 cites W1815763400 @default.
- W4221098061 cites W1920505044 @default.
- W4221098061 cites W195587408 @default.
- W4221098061 cites W1960299197 @default.
- W4221098061 cites W1965692977 @default.
- W4221098061 cites W1973727966 @default.
- W4221098061 cites W1975625753 @default.
- W4221098061 cites W1981218190 @default.
- W4221098061 cites W1986107724 @default.
- W4221098061 cites W2002128394 @default.
- W4221098061 cites W2015011409 @default.
- W4221098061 cites W2026941875 @default.
- W4221098061 cites W2034810227 @default.
- W4221098061 cites W2036102300 @default.
- W4221098061 cites W2048430744 @default.
- W4221098061 cites W2064165914 @default.
- W4221098061 cites W2066567226 @default.
- W4221098061 cites W2071677582 @default.
- W4221098061 cites W2082365839 @default.
- W4221098061 cites W2088642421 @default.
- W4221098061 cites W2109721039 @default.
- W4221098061 cites W2116609513 @default.
- W4221098061 cites W2129993503 @default.
- W4221098061 cites W2158320093 @default.
- W4221098061 cites W2158553842 @default.
- W4221098061 cites W2170442838 @default.
- W4221098061 cites W2188398335 @default.
- W4221098061 cites W2588254687 @default.
- W4221098061 cites W2623179640 @default.
- W4221098061 cites W2658830562 @default.
- W4221098061 cites W2766185881 @default.
- W4221098061 cites W2773572302 @default.
- W4221098061 cites W2795340751 @default.
- W4221098061 cites W2895251364 @default.
- W4221098061 cites W2896154035 @default.
- W4221098061 cites W2905148512 @default.
- W4221098061 cites W2981747740 @default.
- W4221098061 cites W3017007778 @default.
- W4221098061 cites W3024180587 @default.
- W4221098061 cites W3081487435 @default.
- W4221098061 cites W3132106813 @default.
- W4221098061 cites W4212904474 @default.
- W4221098061 cites W4300872579 @default.
- W4221098061 doi "https://doi.org/10.1177/23814683221086623" @default.
- W4221098061 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35321028" @default.
- W4221098061 hasPublicationYear "2022" @default.
- W4221098061 type Work @default.
- W4221098061 citedByCount "3" @default.
- W4221098061 countsByYear W42210980612022 @default.
- W4221098061 countsByYear W42210980612023 @default.
- W4221098061 crossrefType "journal-article" @default.
- W4221098061 hasAuthorship W4221098061A5001664010 @default.
- W4221098061 hasAuthorship W4221098061A5017793957 @default.
- W4221098061 hasAuthorship W4221098061A5019313636 @default.
- W4221098061 hasAuthorship W4221098061A5039379973 @default.
- W4221098061 hasAuthorship W4221098061A5065828034 @default.
- W4221098061 hasAuthorship W4221098061A5079815565 @default.
- W4221098061 hasBestOaLocation W42210980611 @default.
- W4221098061 hasConcept C105795698 @default.
- W4221098061 hasConcept C107673813 @default.
- W4221098061 hasConcept C113174947 @default.
- W4221098061 hasConcept C11413529 @default.
- W4221098061 hasConcept C114614502 @default.
- W4221098061 hasConcept C154945302 @default.
- W4221098061 hasConcept C160234255 @default.
- W4221098061 hasConcept C186399060 @default.
- W4221098061 hasConcept C2776214188 @default.
- W4221098061 hasConcept C33724603 @default.
- W4221098061 hasConcept C33923547 @default.
- W4221098061 hasConcept C36464697 @default.
- W4221098061 hasConcept C41008148 @default.
- W4221098061 hasConcept C57830394 @default.
- W4221098061 hasConcept C84780729 @default.
- W4221098061 hasConceptScore W4221098061C105795698 @default.
- W4221098061 hasConceptScore W4221098061C107673813 @default.
- W4221098061 hasConceptScore W4221098061C113174947 @default.
- W4221098061 hasConceptScore W4221098061C11413529 @default.
- W4221098061 hasConceptScore W4221098061C114614502 @default.
- W4221098061 hasConceptScore W4221098061C154945302 @default.
- W4221098061 hasConceptScore W4221098061C160234255 @default.
- W4221098061 hasConceptScore W4221098061C186399060 @default.
- W4221098061 hasConceptScore W4221098061C2776214188 @default.
- W4221098061 hasConceptScore W4221098061C33724603 @default.
- W4221098061 hasConceptScore W4221098061C33923547 @default.
- W4221098061 hasConceptScore W4221098061C36464697 @default.
- W4221098061 hasConceptScore W4221098061C41008148 @default.