Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221100439> ?p ?o ?g. }
- W4221100439 endingPage "106850" @default.
- W4221100439 startingPage "106850" @default.
- W4221100439 abstract "Vigor detection of crop seeds before putting them on the market is important for ensuring the yield and quality of the crops. In the actual production, however, different levels tend to vary in the number of samples, leading to the problem of sample imbalance. This study proposed a deep convolution neural network (DCNN) with weighted loss to achieve batch and non-destructive vigor detection of rice seeds based on hyperspectral imaging (HSI) under the sample-imbalanced condition. The true vigor state of seeds with different degrees of artificial aging was labeled by traditional analysis methods. The seeds were first classified into six categories according to the aging time using a constructed DCNN, which was proved to be unreasonable. Then four categories were merged, and the seeds were reclassified into three new categories by a rebuilt DCNN. However, merging categories caused the problem of sample imbalance, leading to much confusion between two aged categories. Thus, a DCNN with weighted loss was further proposed focusing on assigning appropriate weight to each category. Obtaining the highest accuracy and Macro F1 of 97.69% and 97.42%, respectively, it outperformed the DCNN with balanced loss and conventional models. The visualization analysis was conducted using PCA and t-SNE to inspect the aggregation between feature points. The overall results indicated the effectiveness of the proposed DCNN with weighted loss in the vigor detection of rice seeds under the sample-imbalanced condition, which would be conducive to online grading according to seed vigor and other qualities in the actual production." @default.
- W4221100439 created "2022-04-03" @default.
- W4221100439 creator A5016628945 @default.
- W4221100439 creator A5026182016 @default.
- W4221100439 creator A5048289236 @default.
- W4221100439 creator A5066054326 @default.
- W4221100439 creator A5075608733 @default.
- W4221100439 creator A5087269163 @default.
- W4221100439 date "2022-05-01" @default.
- W4221100439 modified "2023-10-03" @default.
- W4221100439 title "Deep convolution neural network with weighted loss to detect rice seeds vigor based on hyperspectral imaging under the sample-imbalanced condition" @default.
- W4221100439 cites W2003997078 @default.
- W4221100439 cites W2075685871 @default.
- W4221100439 cites W2086615293 @default.
- W4221100439 cites W2112057041 @default.
- W4221100439 cites W2138290126 @default.
- W4221100439 cites W2144792319 @default.
- W4221100439 cites W2195069286 @default.
- W4221100439 cites W2260427180 @default.
- W4221100439 cites W2280795818 @default.
- W4221100439 cites W2512288612 @default.
- W4221100439 cites W2743188176 @default.
- W4221100439 cites W2752417628 @default.
- W4221100439 cites W2781900029 @default.
- W4221100439 cites W2793335530 @default.
- W4221100439 cites W2793970677 @default.
- W4221100439 cites W2800673766 @default.
- W4221100439 cites W2910512548 @default.
- W4221100439 cites W2910962950 @default.
- W4221100439 cites W2941368100 @default.
- W4221100439 cites W2948012532 @default.
- W4221100439 cites W2963686533 @default.
- W4221100439 cites W2964318286 @default.
- W4221100439 cites W2971475690 @default.
- W4221100439 cites W2978720004 @default.
- W4221100439 cites W2981894987 @default.
- W4221100439 cites W2991616716 @default.
- W4221100439 cites W2994281462 @default.
- W4221100439 cites W2998204190 @default.
- W4221100439 cites W2999530907 @default.
- W4221100439 cites W3010655531 @default.
- W4221100439 cites W3012085312 @default.
- W4221100439 cites W3014438490 @default.
- W4221100439 cites W3021896652 @default.
- W4221100439 cites W3025004244 @default.
- W4221100439 cites W3049379723 @default.
- W4221100439 cites W3096699327 @default.
- W4221100439 cites W3108281646 @default.
- W4221100439 cites W3177767632 @default.
- W4221100439 cites W587107697 @default.
- W4221100439 doi "https://doi.org/10.1016/j.compag.2022.106850" @default.
- W4221100439 hasPublicationYear "2022" @default.
- W4221100439 type Work @default.
- W4221100439 citedByCount "8" @default.
- W4221100439 countsByYear W42211004392022 @default.
- W4221100439 countsByYear W42211004392023 @default.
- W4221100439 crossrefType "journal-article" @default.
- W4221100439 hasAuthorship W4221100439A5016628945 @default.
- W4221100439 hasAuthorship W4221100439A5026182016 @default.
- W4221100439 hasAuthorship W4221100439A5048289236 @default.
- W4221100439 hasAuthorship W4221100439A5066054326 @default.
- W4221100439 hasAuthorship W4221100439A5075608733 @default.
- W4221100439 hasAuthorship W4221100439A5087269163 @default.
- W4221100439 hasConcept C105795698 @default.
- W4221100439 hasConcept C11171543 @default.
- W4221100439 hasConcept C153180895 @default.
- W4221100439 hasConcept C154945302 @default.
- W4221100439 hasConcept C15744967 @default.
- W4221100439 hasConcept C159078339 @default.
- W4221100439 hasConcept C185592680 @default.
- W4221100439 hasConcept C198531522 @default.
- W4221100439 hasConcept C2781140086 @default.
- W4221100439 hasConcept C33923547 @default.
- W4221100439 hasConcept C41008148 @default.
- W4221100439 hasConcept C43617362 @default.
- W4221100439 hasConcept C50644808 @default.
- W4221100439 hasConcept C81363708 @default.
- W4221100439 hasConceptScore W4221100439C105795698 @default.
- W4221100439 hasConceptScore W4221100439C11171543 @default.
- W4221100439 hasConceptScore W4221100439C153180895 @default.
- W4221100439 hasConceptScore W4221100439C154945302 @default.
- W4221100439 hasConceptScore W4221100439C15744967 @default.
- W4221100439 hasConceptScore W4221100439C159078339 @default.
- W4221100439 hasConceptScore W4221100439C185592680 @default.
- W4221100439 hasConceptScore W4221100439C198531522 @default.
- W4221100439 hasConceptScore W4221100439C2781140086 @default.
- W4221100439 hasConceptScore W4221100439C33923547 @default.
- W4221100439 hasConceptScore W4221100439C41008148 @default.
- W4221100439 hasConceptScore W4221100439C43617362 @default.
- W4221100439 hasConceptScore W4221100439C50644808 @default.
- W4221100439 hasConceptScore W4221100439C81363708 @default.
- W4221100439 hasLocation W42211004391 @default.
- W4221100439 hasOpenAccess W4221100439 @default.
- W4221100439 hasPrimaryLocation W42211004391 @default.
- W4221100439 hasRelatedWork W1869808405 @default.
- W4221100439 hasRelatedWork W2028628118 @default.
- W4221100439 hasRelatedWork W2781623059 @default.
- W4221100439 hasRelatedWork W2783789044 @default.