Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221106197> ?p ?o ?g. }
- W4221106197 endingPage "199" @default.
- W4221106197 startingPage "190" @default.
- W4221106197 abstract "The basic issue of formulating a linear flow model for the analysis of potential flow around a ship advancing at a constant speed in regular waves is considered. Specifically, the ‘rigid-waterplane flow model’, previously considered for diffraction–radiation of regular waves by offshore structures, is applied to analyze flows around ships advancing in regular waves. A straightforward application of Green’s fundamental identity to the rigid-waterplane flow model yields a remarkable new boundary integral flow representation . Indeed, this flow representation does not involve a line integral around the mean waterline of the ship hull surface, is weakly singular, does not involve a distribution of dipoles over the ship-hull surface, and is free from irregular frequencies. In the particular case of flow around a ship steadily advancing in calm water , the boundary integral flow representation obtained in the study via an analysis based on the rigid-waterplane flow model is identical to the flow representation associated with the Neumann–Michell theory, which is based on a different linear flow model that only considers the flow region strictly outside the ship but consistently accounts for the linear contribution of the thin band of water between the wave profile along the ship hull surface and the undisturbed free surface. This result strongly suggests that the classical application of Green’s basic identity to analyze linear potential flow around a ship advancing in regular waves or in calm water, which yields a notoriously troublesome line integral around the ship waterline, may be questionable due to possible incompatibilities between the Neumann boundary condition at the ship hull surface and the linear free surface boundary condition associated with flows around ships advancing in calm water or in regular waves. This fundamental difficulty may be alleviated in the rigid-waterplane flow model, which imposes a compatibility condition between the Neumann boundary condition at the rigid lid that artificially closes the open ship hull surface and the linear boundary condition at the free surface above the waterplane-lid. The boundary integral flow representation given in the study also holds for diffraction–radiation of regular waves by offshore structures. Thus, this new flow representation provides a common mathematical basis, which fundamentally differs from the basis steadfastly adopted over the past fifty years, for the analysis of three basic classes of flows in ship and offshore hydrodynamics, and indeed can be applied more generally to other boundary-value problems such as those associated with flexural-gravity waves for ice sheets or very large floating structures." @default.
- W4221106197 created "2022-04-03" @default.
- W4221106197 creator A5001846517 @default.
- W4221106197 creator A5021750632 @default.
- W4221106197 creator A5074087095 @default.
- W4221106197 date "2022-07-01" @default.
- W4221106197 modified "2023-09-28" @default.
- W4221106197 title "An alternative linear flow model and boundary integral flow representation for ship motions in regular waves" @default.
- W4221106197 cites W1966425655 @default.
- W4221106197 cites W1966678320 @default.
- W4221106197 cites W1972491989 @default.
- W4221106197 cites W1973096475 @default.
- W4221106197 cites W1973928462 @default.
- W4221106197 cites W1980898122 @default.
- W4221106197 cites W1985432349 @default.
- W4221106197 cites W1997389680 @default.
- W4221106197 cites W2020177815 @default.
- W4221106197 cites W2020632997 @default.
- W4221106197 cites W2028160418 @default.
- W4221106197 cites W2056948424 @default.
- W4221106197 cites W2059272377 @default.
- W4221106197 cites W2066317560 @default.
- W4221106197 cites W213685890 @default.
- W4221106197 cites W2140385646 @default.
- W4221106197 cites W2346308695 @default.
- W4221106197 cites W2519754452 @default.
- W4221106197 cites W2522379609 @default.
- W4221106197 cites W2527132774 @default.
- W4221106197 cites W2564719764 @default.
- W4221106197 cites W2598784525 @default.
- W4221106197 cites W2741166285 @default.
- W4221106197 cites W2790597495 @default.
- W4221106197 cites W2803502634 @default.
- W4221106197 cites W2888098101 @default.
- W4221106197 cites W2888638383 @default.
- W4221106197 cites W2909909086 @default.
- W4221106197 cites W2931029330 @default.
- W4221106197 cites W2963586475 @default.
- W4221106197 cites W3016230353 @default.
- W4221106197 cites W3027115756 @default.
- W4221106197 cites W3028281128 @default.
- W4221106197 cites W3083307677 @default.
- W4221106197 cites W3156138256 @default.
- W4221106197 cites W3158005157 @default.
- W4221106197 cites W3184647622 @default.
- W4221106197 cites W3206836225 @default.
- W4221106197 cites W4210732782 @default.
- W4221106197 cites W4239265446 @default.
- W4221106197 cites W620192821 @default.
- W4221106197 cites W754442033 @default.
- W4221106197 cites W848592635 @default.
- W4221106197 doi "https://doi.org/10.1016/j.euromechflu.2022.03.003" @default.
- W4221106197 hasPublicationYear "2022" @default.
- W4221106197 type Work @default.
- W4221106197 citedByCount "4" @default.
- W4221106197 countsByYear W42211061972022 @default.
- W4221106197 countsByYear W42211061972023 @default.
- W4221106197 crossrefType "journal-article" @default.
- W4221106197 hasAuthorship W4221106197A5001846517 @default.
- W4221106197 hasAuthorship W4221106197A5021750632 @default.
- W4221106197 hasAuthorship W4221106197A5074087095 @default.
- W4221106197 hasConcept C121332964 @default.
- W4221106197 hasConcept C131043120 @default.
- W4221106197 hasConcept C134306372 @default.
- W4221106197 hasConcept C17744445 @default.
- W4221106197 hasConcept C199539241 @default.
- W4221106197 hasConcept C2776359362 @default.
- W4221106197 hasConcept C33923547 @default.
- W4221106197 hasConcept C38349280 @default.
- W4221106197 hasConcept C41008148 @default.
- W4221106197 hasConcept C57879066 @default.
- W4221106197 hasConcept C62354387 @default.
- W4221106197 hasConcept C74650414 @default.
- W4221106197 hasConcept C94625758 @default.
- W4221106197 hasConceptScore W4221106197C121332964 @default.
- W4221106197 hasConceptScore W4221106197C131043120 @default.
- W4221106197 hasConceptScore W4221106197C134306372 @default.
- W4221106197 hasConceptScore W4221106197C17744445 @default.
- W4221106197 hasConceptScore W4221106197C199539241 @default.
- W4221106197 hasConceptScore W4221106197C2776359362 @default.
- W4221106197 hasConceptScore W4221106197C33923547 @default.
- W4221106197 hasConceptScore W4221106197C38349280 @default.
- W4221106197 hasConceptScore W4221106197C41008148 @default.
- W4221106197 hasConceptScore W4221106197C57879066 @default.
- W4221106197 hasConceptScore W4221106197C62354387 @default.
- W4221106197 hasConceptScore W4221106197C74650414 @default.
- W4221106197 hasConceptScore W4221106197C94625758 @default.
- W4221106197 hasFunder F4320321001 @default.
- W4221106197 hasLocation W42211061971 @default.
- W4221106197 hasOpenAccess W4221106197 @default.
- W4221106197 hasPrimaryLocation W42211061971 @default.
- W4221106197 hasRelatedWork W2013495081 @default.
- W4221106197 hasRelatedWork W2024074743 @default.
- W4221106197 hasRelatedWork W2108886422 @default.
- W4221106197 hasRelatedWork W2210320926 @default.
- W4221106197 hasRelatedWork W2313264934 @default.
- W4221106197 hasRelatedWork W2322016241 @default.
- W4221106197 hasRelatedWork W2327411525 @default.