Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221107130> ?p ?o ?g. }
- W4221107130 endingPage "278" @default.
- W4221107130 startingPage "266" @default.
- W4221107130 abstract "Glioblastoma multiforme (GBM) is an aggressive primary brain cancer and although patients undergo surgery and chemoradiotherapy, residual cancer cells still migrate to healthy brain tissue and lead to tumor relapse after treatment. New therapeutic strategies are therefore urgently needed to better mitigate this tumor recurrence. To address this need, we envision after surgical removal of the tumor, implantable biomaterials in the resection cavity can treat or collect residual GBM cells for their subsequent eradication. To this end, we systematically characterized a poly(ethylene glycol)-based injectable hydrogel crosslinked via a thiol-Michael addition reaction by tuning its hydration level and aqueous NaHCO3 concentration. The physical and chemical properties of the different formulations were investigated by assessing the strength and stability of the polymer networks and their swelling behavior. The hydrogel biocompatibility was assessed by performing in vitro cytotoxicity assays, immunoassays, and immunocytochemistry to monitor the reactivity of astrocytes cultured on the hydrogel surface over time. These characterization studies revealed key structure-property relationships. Furthermore, the results indicated hydrogels synthesized with 0.175 M NaHCO3 and 50 wt% water content swelled the least, possessed a storage modulus that can withstand high intracranial pressures while avoiding a mechanical mismatch, had a sufficiently crosslinked polymer network, and did not degrade rapidly. This formulation was not cytotoxic to astrocytes and produced minimal immunogenic responses in vitro. These properties suggest this hydrogel formulation is the most optimal for implantation in the resection cavity and compatible toward GBM therapy. STATEMENT OF SIGNIFICANCE: Survival times for glioblastoma patients have not improved significantly over the last several decades, as cancer cells remain after conventional therapies and form secondary tumors. We characterized a biodegradable, injectable hydrogel to reveal structure-property relationships that can be tuned to conform the hydrogel toward glioblastoma therapy. Nine formulations were systematically characterized to optimize the hydrogel based on physical, chemical, and biological compatibility with the glioblastoma microenvironment. This hydrogel can potentially be used for adjuvant therapy to glioblastoma treatment, such as by providing a source of molecular release for therapeutic agents, which will be investigated in future work. The optimized formulation will be developed further to capture and eradicate glioblastoma cells with chemical and physical stimuli in future research." @default.
- W4221107130 created "2022-04-03" @default.
- W4221107130 creator A5007306180 @default.
- W4221107130 creator A5008275970 @default.
- W4221107130 creator A5065726426 @default.
- W4221107130 creator A5066564317 @default.
- W4221107130 creator A5071475167 @default.
- W4221107130 date "2022-05-01" @default.
- W4221107130 modified "2023-10-11" @default.
- W4221107130 title "Characterization and structure-property relationships of an injectable thiol-Michael addition hydrogel toward compatibility with glioblastoma therapy" @default.
- W4221107130 cites W1899138126 @default.
- W4221107130 cites W1964422016 @default.
- W4221107130 cites W1967936088 @default.
- W4221107130 cites W1971125401 @default.
- W4221107130 cites W1977054660 @default.
- W4221107130 cites W1979031104 @default.
- W4221107130 cites W1979883057 @default.
- W4221107130 cites W1987898868 @default.
- W4221107130 cites W1992955004 @default.
- W4221107130 cites W1997417575 @default.
- W4221107130 cites W2001244335 @default.
- W4221107130 cites W2001372591 @default.
- W4221107130 cites W2001544973 @default.
- W4221107130 cites W2022518367 @default.
- W4221107130 cites W2023412782 @default.
- W4221107130 cites W2024495952 @default.
- W4221107130 cites W2028420240 @default.
- W4221107130 cites W2029939001 @default.
- W4221107130 cites W2030977072 @default.
- W4221107130 cites W2043156676 @default.
- W4221107130 cites W2052121439 @default.
- W4221107130 cites W2070170630 @default.
- W4221107130 cites W2071269898 @default.
- W4221107130 cites W2087700804 @default.
- W4221107130 cites W2089485530 @default.
- W4221107130 cites W2094592775 @default.
- W4221107130 cites W2140573886 @default.
- W4221107130 cites W2141699748 @default.
- W4221107130 cites W2162442448 @default.
- W4221107130 cites W2172501680 @default.
- W4221107130 cites W2206159636 @default.
- W4221107130 cites W2300317698 @default.
- W4221107130 cites W2325323186 @default.
- W4221107130 cites W2344920256 @default.
- W4221107130 cites W2426624556 @default.
- W4221107130 cites W2530253019 @default.
- W4221107130 cites W2588264753 @default.
- W4221107130 cites W2599346753 @default.
- W4221107130 cites W2741401074 @default.
- W4221107130 cites W2768407767 @default.
- W4221107130 cites W2806689119 @default.
- W4221107130 cites W2808629228 @default.
- W4221107130 cites W2811290140 @default.
- W4221107130 cites W2883186016 @default.
- W4221107130 cites W2891192336 @default.
- W4221107130 cites W2897761451 @default.
- W4221107130 cites W2901149800 @default.
- W4221107130 cites W2901650187 @default.
- W4221107130 cites W2905778960 @default.
- W4221107130 cites W2911253589 @default.
- W4221107130 cites W2924438894 @default.
- W4221107130 cites W2989118238 @default.
- W4221107130 cites W2990036350 @default.
- W4221107130 cites W2996295883 @default.
- W4221107130 cites W3002149582 @default.
- W4221107130 cites W3011350845 @default.
- W4221107130 cites W3015886383 @default.
- W4221107130 cites W3035412507 @default.
- W4221107130 cites W3042081078 @default.
- W4221107130 cites W3095632424 @default.
- W4221107130 cites W3112258298 @default.
- W4221107130 cites W3153893933 @default.
- W4221107130 cites W3159322621 @default.
- W4221107130 doi "https://doi.org/10.1016/j.actbio.2022.03.016" @default.
- W4221107130 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35296443" @default.
- W4221107130 hasPublicationYear "2022" @default.
- W4221107130 type Work @default.
- W4221107130 citedByCount "2" @default.
- W4221107130 countsByYear W42211071302023 @default.
- W4221107130 crossrefType "journal-article" @default.
- W4221107130 hasAuthorship W4221107130A5007306180 @default.
- W4221107130 hasAuthorship W4221107130A5008275970 @default.
- W4221107130 hasAuthorship W4221107130A5065726426 @default.
- W4221107130 hasAuthorship W4221107130A5066564317 @default.
- W4221107130 hasAuthorship W4221107130A5071475167 @default.
- W4221107130 hasBestOaLocation W42211071301 @default.
- W4221107130 hasConcept C108586683 @default.
- W4221107130 hasConcept C136229726 @default.
- W4221107130 hasConcept C142724271 @default.
- W4221107130 hasConcept C178790620 @default.
- W4221107130 hasConcept C185592680 @default.
- W4221107130 hasConcept C188027245 @default.
- W4221107130 hasConcept C191897082 @default.
- W4221107130 hasConcept C192562407 @default.
- W4221107130 hasConcept C2777230088 @default.
- W4221107130 hasConcept C2777516009 @default.
- W4221107130 hasConcept C2779130545 @default.
- W4221107130 hasConcept C71924100 @default.