Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221111162> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4221111162 abstract "<p>Natural hazards cause a plethora of impacts on society, ranging from direct impacts such as loss of lives to cascading ones such as power outages and supply shortages. Despite the severe social and economic losses of extreme events, a <strong>comprehensive assessment of their impacts remains largely missing</strong>. Existing studies tend to focus on impacts that are relatively easy to measure (e.g. financial loss, number of deaths) and commonly break down impact assessments into specific sectors (e.g. forestry, agriculture). Thus, in the absence of multi-sector impact datasets, decision-makers have no baseline information for evaluating whether adaptation measures effectively reduce impacts. This can result in blind spots in adaptation.</p><p>In recent years, text data (e.g. newspapers, social media, and Wikipedia entries) have been used to elaborate impact datasets. However, the manual extraction of impact information by human experts is a time-consuming task. To develop comprehensive impact datasets, we propose using text-mining on text documents. We developed a tool termed <strong>TM-Impacts (text-mining of natural hazard impacts)</strong>, which allows us to automatically extract information on impacts by applying natural language processing (NLP) and machine learning (ML) tools to text-corpora. TM-Impacts is built upon a previous prototype application (de Brito et al., 2020).</p><p>TM-Impacts consists of three complementary modules. The first focuses on using <strong>unsupervised topic modelling</strong> to identify the main topics covered in the text. These can include not only the disaster impacts but also information on response and recovery. The second module is based on the use of <strong>hand-crafted rules and pattern matching</strong> to extract information on specific impact types (e.g. traffic disruption, power outages). The final module builds upon the second one, and it uses the resulting labelled data to train <strong>supervised ML algorithms</strong> aiming to classify unlabeled text data into impact types.</p><p>We illustrate the application of TM-Impacts using the example of the 2021 flood in Germany. This event led to more than 180 fatalities and the disruption of critical infrastructure that continued for months after the event. We built a text corpus with more than 26,000 newspaper articles published in 200 different news outlets between July and November 2021. By using TM-Impacts, we were able to detect 20 different impact types, which were mapped at the NUTS 3 scale. We also identified temporal patterns. As expected, during the onset of the event, reporting on impacts tended to focus on deaths and missing people, whereas texts published in November focused on long term impacts such as the disruption of water supply.</p><p>In conclusion, we demonstrate that <strong>TM-Impacts allows scanning large amounts of text data to build multi-sector impact datasets with a great spatial and temporal stratification</strong>. We expect the use of text-mining to become widespread in assessing the impacts of natural hazards.</p><p>&#160;</p><p>de Brito, M.M., Kuhlicke, C., Marx, A. (2020) Near-real-time drought impact assessment: A text mining approach on the 2018/19 drought in Germany. Environmental Research Letters.&#160;doi:org/10.1088/1748-9326/aba4ca</p>" @default.
- W4221111162 created "2022-04-03" @default.
- W4221111162 creator A5006100138 @default.
- W4221111162 creator A5035587072 @default.
- W4221111162 creator A5060930814 @default.
- W4221111162 creator A5078285448 @default.
- W4221111162 date "2022-03-27" @default.
- W4221111162 modified "2023-09-29" @default.
- W4221111162 title "Text-mining of natural hazard impacts (TM-Impacts): an application to the 2021 flood in Germany" @default.
- W4221111162 doi "https://doi.org/10.5194/egusphere-egu22-2001" @default.
- W4221111162 hasPublicationYear "2022" @default.
- W4221111162 type Work @default.
- W4221111162 citedByCount "0" @default.
- W4221111162 crossrefType "posted-content" @default.
- W4221111162 hasAuthorship W4221111162A5006100138 @default.
- W4221111162 hasAuthorship W4221111162A5035587072 @default.
- W4221111162 hasAuthorship W4221111162A5060930814 @default.
- W4221111162 hasAuthorship W4221111162A5078285448 @default.
- W4221111162 hasConcept C112698675 @default.
- W4221111162 hasConcept C127413603 @default.
- W4221111162 hasConcept C136764020 @default.
- W4221111162 hasConcept C144133560 @default.
- W4221111162 hasConcept C147176958 @default.
- W4221111162 hasConcept C154945302 @default.
- W4221111162 hasConcept C166957645 @default.
- W4221111162 hasConcept C188897 @default.
- W4221111162 hasConcept C201280247 @default.
- W4221111162 hasConcept C205649164 @default.
- W4221111162 hasConcept C41008148 @default.
- W4221111162 hasConcept C518677369 @default.
- W4221111162 hasConcept C74256435 @default.
- W4221111162 hasConceptScore W4221111162C112698675 @default.
- W4221111162 hasConceptScore W4221111162C127413603 @default.
- W4221111162 hasConceptScore W4221111162C136764020 @default.
- W4221111162 hasConceptScore W4221111162C144133560 @default.
- W4221111162 hasConceptScore W4221111162C147176958 @default.
- W4221111162 hasConceptScore W4221111162C154945302 @default.
- W4221111162 hasConceptScore W4221111162C166957645 @default.
- W4221111162 hasConceptScore W4221111162C188897 @default.
- W4221111162 hasConceptScore W4221111162C201280247 @default.
- W4221111162 hasConceptScore W4221111162C205649164 @default.
- W4221111162 hasConceptScore W4221111162C41008148 @default.
- W4221111162 hasConceptScore W4221111162C518677369 @default.
- W4221111162 hasConceptScore W4221111162C74256435 @default.
- W4221111162 hasLocation W42211111621 @default.
- W4221111162 hasOpenAccess W4221111162 @default.
- W4221111162 hasPrimaryLocation W42211111621 @default.
- W4221111162 hasRelatedWork W11244355 @default.
- W4221111162 hasRelatedWork W14972009 @default.
- W4221111162 hasRelatedWork W1563810 @default.
- W4221111162 hasRelatedWork W1716356 @default.
- W4221111162 hasRelatedWork W3599679 @default.
- W4221111162 hasRelatedWork W4588473 @default.
- W4221111162 hasRelatedWork W5641948 @default.
- W4221111162 hasRelatedWork W8407316 @default.
- W4221111162 hasRelatedWork W9292421 @default.
- W4221111162 hasRelatedWork W5221400 @default.
- W4221111162 isParatext "false" @default.
- W4221111162 isRetracted "false" @default.
- W4221111162 workType "article" @default.