Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221114920> ?p ?o ?g. }
- W4221114920 endingPage "8" @default.
- W4221114920 startingPage "1" @default.
- W4221114920 abstract "How to facilitate users to quickly and accurately search for the text information they need is a current research hotspot. Text clustering can improve the efficiency of information search and is an effective text retrieval method. Keyword extraction and cluster center point selection are key issues in text clustering research. Common keyword extraction algorithms can be divided into three categories: semantic-based algorithms, machine learning-based algorithms, and statistical model-based algorithms. There are three common methods for selecting cluster centers: randomly selecting the initial cluster center point, manually specifying the cluster center point, and selecting the cluster center point according to the similarity between the points to be clustered. The randomly selected initial cluster center points may contain “outliers,” and the clustering results are locally optimal. Manually specifying the cluster center points will be very subjective because each person’s understanding of the text set is different, and it is not suitable for the case of a large number of text sets. Selecting the cluster center points according to the similarity between the points to be clustered can make the selected cluster center points distributed in each class and be as close as possible to the class center points, but it takes a long time to calculate the cluster centers. Aiming at this problem, this paper proposes a keyword extraction algorithm based on cluster analysis. The results show that the algorithm does not rely on background knowledge bases, dictionaries, etc., and obtains statistical parameters and builds models through training. Experiments show that the keyword extraction algorithm has high accuracy and can quickly extract the subject content of an English translation." @default.
- W4221114920 created "2022-04-03" @default.
- W4221114920 creator A5089529129 @default.
- W4221114920 date "2022-03-28" @default.
- W4221114920 modified "2023-10-18" @default.
- W4221114920 title "Research on Keyword Extraction Algorithm in English Text Based on Cluster Analysis" @default.
- W4221114920 cites W1509979276 @default.
- W4221114920 cites W1550806611 @default.
- W4221114920 cites W2013264013 @default.
- W4221114920 cites W2032488697 @default.
- W4221114920 cites W2043004216 @default.
- W4221114920 cites W2064418625 @default.
- W4221114920 cites W2103479483 @default.
- W4221114920 cites W2772993019 @default.
- W4221114920 cites W2789330408 @default.
- W4221114920 cites W2800201914 @default.
- W4221114920 cites W2884603128 @default.
- W4221114920 cites W2902781824 @default.
- W4221114920 cites W2912622940 @default.
- W4221114920 cites W2934302500 @default.
- W4221114920 cites W2939043544 @default.
- W4221114920 cites W2948100573 @default.
- W4221114920 cites W2966715121 @default.
- W4221114920 cites W3000691000 @default.
- W4221114920 cites W3012912908 @default.
- W4221114920 cites W3016663681 @default.
- W4221114920 cites W3033730863 @default.
- W4221114920 cites W3035205925 @default.
- W4221114920 cites W3091215113 @default.
- W4221114920 cites W3104187952 @default.
- W4221114920 cites W3113379038 @default.
- W4221114920 cites W3114897843 @default.
- W4221114920 cites W3134727238 @default.
- W4221114920 cites W3147943130 @default.
- W4221114920 cites W3190309479 @default.
- W4221114920 cites W4205668380 @default.
- W4221114920 cites W4242097432 @default.
- W4221114920 doi "https://doi.org/10.1155/2022/4293102" @default.
- W4221114920 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35387240" @default.
- W4221114920 hasPublicationYear "2022" @default.
- W4221114920 type Work @default.
- W4221114920 citedByCount "2" @default.
- W4221114920 countsByYear W42211149202023 @default.
- W4221114920 crossrefType "journal-article" @default.
- W4221114920 hasAuthorship W4221114920A5089529129 @default.
- W4221114920 hasBestOaLocation W42211149201 @default.
- W4221114920 hasConcept C103278499 @default.
- W4221114920 hasConcept C11413529 @default.
- W4221114920 hasConcept C115961682 @default.
- W4221114920 hasConcept C124101348 @default.
- W4221114920 hasConcept C153180895 @default.
- W4221114920 hasConcept C154945302 @default.
- W4221114920 hasConcept C164866538 @default.
- W4221114920 hasConcept C199360897 @default.
- W4221114920 hasConcept C23123220 @default.
- W4221114920 hasConcept C2524010 @default.
- W4221114920 hasConcept C2777212361 @default.
- W4221114920 hasConcept C2780288562 @default.
- W4221114920 hasConcept C28719098 @default.
- W4221114920 hasConcept C33923547 @default.
- W4221114920 hasConcept C41008148 @default.
- W4221114920 hasConcept C73555534 @default.
- W4221114920 hasConcept C79337645 @default.
- W4221114920 hasConceptScore W4221114920C103278499 @default.
- W4221114920 hasConceptScore W4221114920C11413529 @default.
- W4221114920 hasConceptScore W4221114920C115961682 @default.
- W4221114920 hasConceptScore W4221114920C124101348 @default.
- W4221114920 hasConceptScore W4221114920C153180895 @default.
- W4221114920 hasConceptScore W4221114920C154945302 @default.
- W4221114920 hasConceptScore W4221114920C164866538 @default.
- W4221114920 hasConceptScore W4221114920C199360897 @default.
- W4221114920 hasConceptScore W4221114920C23123220 @default.
- W4221114920 hasConceptScore W4221114920C2524010 @default.
- W4221114920 hasConceptScore W4221114920C2777212361 @default.
- W4221114920 hasConceptScore W4221114920C2780288562 @default.
- W4221114920 hasConceptScore W4221114920C28719098 @default.
- W4221114920 hasConceptScore W4221114920C33923547 @default.
- W4221114920 hasConceptScore W4221114920C41008148 @default.
- W4221114920 hasConceptScore W4221114920C73555534 @default.
- W4221114920 hasConceptScore W4221114920C79337645 @default.
- W4221114920 hasLocation W42211149201 @default.
- W4221114920 hasLocation W42211149202 @default.
- W4221114920 hasLocation W42211149203 @default.
- W4221114920 hasLocation W42211149204 @default.
- W4221114920 hasOpenAccess W4221114920 @default.
- W4221114920 hasPrimaryLocation W42211149201 @default.
- W4221114920 hasRelatedWork W1457719682 @default.
- W4221114920 hasRelatedWork W2337929971 @default.
- W4221114920 hasRelatedWork W2360069064 @default.
- W4221114920 hasRelatedWork W2380798983 @default.
- W4221114920 hasRelatedWork W2762277149 @default.
- W4221114920 hasRelatedWork W2888523397 @default.
- W4221114920 hasRelatedWork W3183283580 @default.
- W4221114920 hasRelatedWork W4250175685 @default.
- W4221114920 hasRelatedWork W4283741549 @default.
- W4221114920 hasRelatedWork W4313069709 @default.
- W4221114920 hasVolume "2022" @default.
- W4221114920 isParatext "false" @default.