Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221116415> ?p ?o ?g. }
- W4221116415 endingPage "102765" @default.
- W4221116415 startingPage "102765" @default.
- W4221116415 abstract "The convergence of polymer nanocomposite development and additive manufacturing creates unprecedented opportunities for advancing novel materials design and product customization in various industrial applications. Graphene has been used as fillers to enhance the host polymer materials for additive manufacturing. However, creating and additively manufacturing a new polymer nanocomposite is challenging due to the strong interactions between graphene concentration and process parameters. This work aims to develop a data-driven nonparametric Bayesian framework to unify nanocomposite design and part fabrication by integrating statistical learning and optimization into quality prediction and process optimization. It regulates the design and fabrication of different ABS/graphene nanocomposite specimens using a fused filament fabrication (FFF) process, and ensures successful printings and accurate quality prediction while maintaining its design flexibility and customization. The preliminary experimental results showed that adding graphene to ABS (5 wt%) and adjusting FFF process parameters significantly improved the surface roughness of the printed FFF specimens and increased their ultimate tensile strength by 25–25%. With surface roughness as the quality indicator, Gaussian process regression in the proposed framework achieved surface roughness modeling with high prediction accuracy (MAPE = 0.13), and Bayesian optimization quickly discovered the optimal process parameters within merely 5 iterations. Compared to trial-and-error or computational approaches, the data-driven framework can bypass the complexity of physics-based models, explore the feasible space efficiently, and reduce time and cost for ABS/graphene nanocomposite design and FFF fabrication. It can be easily extended to other nanocomposites and will have a profound influence on advancing their applications and innovations in various industries." @default.
- W4221116415 created "2022-04-03" @default.
- W4221116415 creator A5028523052 @default.
- W4221116415 creator A5036647592 @default.
- W4221116415 creator A5041181449 @default.
- W4221116415 creator A5046173951 @default.
- W4221116415 creator A5057117256 @default.
- W4221116415 date "2022-06-01" @default.
- W4221116415 modified "2023-10-11" @default.
- W4221116415 title "Nonparametric Bayesian framework for material and process optimization with nanocomposite fused filament fabrication" @default.
- W4221116415 cites W1890920594 @default.
- W4221116415 cites W1894441121 @default.
- W4221116415 cites W2022732553 @default.
- W4221116415 cites W2034816967 @default.
- W4221116415 cites W2051255125 @default.
- W4221116415 cites W2061717486 @default.
- W4221116415 cites W2094873681 @default.
- W4221116415 cites W2125671528 @default.
- W4221116415 cites W2131684499 @default.
- W4221116415 cites W2142615681 @default.
- W4221116415 cites W2168342488 @default.
- W4221116415 cites W2236466824 @default.
- W4221116415 cites W2308316586 @default.
- W4221116415 cites W2342849624 @default.
- W4221116415 cites W2512199170 @default.
- W4221116415 cites W2514808463 @default.
- W4221116415 cites W2613920225 @default.
- W4221116415 cites W2740821549 @default.
- W4221116415 cites W2753859052 @default.
- W4221116415 cites W2758160981 @default.
- W4221116415 cites W2769242058 @default.
- W4221116415 cites W2793666492 @default.
- W4221116415 cites W2795902960 @default.
- W4221116415 cites W2810445254 @default.
- W4221116415 cites W2900016099 @default.
- W4221116415 cites W2941045572 @default.
- W4221116415 cites W2947570887 @default.
- W4221116415 cites W2949858169 @default.
- W4221116415 cites W2963330234 @default.
- W4221116415 cites W2966160262 @default.
- W4221116415 cites W2969984585 @default.
- W4221116415 cites W2976336048 @default.
- W4221116415 cites W3037340101 @default.
- W4221116415 cites W3042983445 @default.
- W4221116415 cites W3128232219 @default.
- W4221116415 cites W566602208 @default.
- W4221116415 cites W856126711 @default.
- W4221116415 doi "https://doi.org/10.1016/j.addma.2022.102765" @default.
- W4221116415 hasPublicationYear "2022" @default.
- W4221116415 type Work @default.
- W4221116415 citedByCount "4" @default.
- W4221116415 countsByYear W42211164152022 @default.
- W4221116415 countsByYear W42211164152023 @default.
- W4221116415 crossrefType "journal-article" @default.
- W4221116415 hasAuthorship W4221116415A5028523052 @default.
- W4221116415 hasAuthorship W4221116415A5036647592 @default.
- W4221116415 hasAuthorship W4221116415A5041181449 @default.
- W4221116415 hasAuthorship W4221116415A5046173951 @default.
- W4221116415 hasAuthorship W4221116415A5057117256 @default.
- W4221116415 hasConcept C107365816 @default.
- W4221116415 hasConcept C127413603 @default.
- W4221116415 hasConcept C136525101 @default.
- W4221116415 hasConcept C142724271 @default.
- W4221116415 hasConcept C159985019 @default.
- W4221116415 hasConcept C171250308 @default.
- W4221116415 hasConcept C192562407 @default.
- W4221116415 hasConcept C204787440 @default.
- W4221116415 hasConcept C2777510241 @default.
- W4221116415 hasConcept C30080830 @default.
- W4221116415 hasConcept C3231350 @default.
- W4221116415 hasConcept C41008148 @default.
- W4221116415 hasConcept C521977710 @default.
- W4221116415 hasConcept C71924100 @default.
- W4221116415 hasConcept C78519656 @default.
- W4221116415 hasConcept C92880739 @default.
- W4221116415 hasConceptScore W4221116415C107365816 @default.
- W4221116415 hasConceptScore W4221116415C127413603 @default.
- W4221116415 hasConceptScore W4221116415C136525101 @default.
- W4221116415 hasConceptScore W4221116415C142724271 @default.
- W4221116415 hasConceptScore W4221116415C159985019 @default.
- W4221116415 hasConceptScore W4221116415C171250308 @default.
- W4221116415 hasConceptScore W4221116415C192562407 @default.
- W4221116415 hasConceptScore W4221116415C204787440 @default.
- W4221116415 hasConceptScore W4221116415C2777510241 @default.
- W4221116415 hasConceptScore W4221116415C30080830 @default.
- W4221116415 hasConceptScore W4221116415C3231350 @default.
- W4221116415 hasConceptScore W4221116415C41008148 @default.
- W4221116415 hasConceptScore W4221116415C521977710 @default.
- W4221116415 hasConceptScore W4221116415C71924100 @default.
- W4221116415 hasConceptScore W4221116415C78519656 @default.
- W4221116415 hasConceptScore W4221116415C92880739 @default.
- W4221116415 hasLocation W42211164151 @default.
- W4221116415 hasOpenAccess W4221116415 @default.
- W4221116415 hasPrimaryLocation W42211164151 @default.
- W4221116415 hasRelatedWork W2020946050 @default.
- W4221116415 hasRelatedWork W2038729374 @default.
- W4221116415 hasRelatedWork W2038756053 @default.
- W4221116415 hasRelatedWork W2369965513 @default.