Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221120871> ?p ?o ?g. }
- W4221120871 endingPage "104576" @default.
- W4221120871 startingPage "104576" @default.
- W4221120871 abstract "The importance of obtaining comprehensive and accurate information from cellular proteomics experiments asks for a systematic investigation of sample preparation protocols. In particular when working with unicellular organisms with strong cell walls, such as found in the model organism and cell factory Saccharomyces cerevisiae. Here, we performed a systematic comparison of sample preparation protocols using a matrix of different conditions commonly applied in whole cell lysate, bottom-up proteomics experiments. The different protocols were evaluated for their overall fraction of identified spectra, proteome and amino acid sequence coverage, GO-term distribution and number of peptide modifications, by employing a combination of database and unrestricted modification search approaches. Ultimately, the best protocols enabled the identification of approximately 65-70% of all acquired fragmentation spectra, where additional de novo sequencing suggests that unidentified spectra were largely of too low spectral quality to provide confident spectrum matches. Generally, a range of peptide modifications could be linked to solvents, additives as well as filter materials. Most importantly, the use of moderate incubation temperatures and times circumvented excessive formation of modification artefacts. The collected protocols and large sets of mass spectrometric raw data provide a resource to evaluate and design new protocols and guide the analysis of (native) peptide modifications. SIGNIFICANCE: The single-celled eukaryote yeast is a widely used model organism for higher eukaryotes in which, for example, the regulation of glycolysis is studied in the context of health and disease. Moreover, yeast is a widely employed cell factory because it is one of the few eukaryotic organisms that can efficiently grow under both aerobic and anaerobic conditions. Large-scale proteomics studies have become increasingly important for single-celled model organisms, such as yeast, in order to provide fundamental understanding of their metabolic processes and proteome dynamics under changing environmental conditions. However, comprehensive and accurate cellular proteomics experiments require optimised sample preparation procedures, in particular when working with unicellular organisms with rigid cell walls, such as found in yeast. Protocols may substantially bias towards specific protein fractions, modify native protein modifications or introduce artificial modifications. That lowers the overall number of spectral identifications and challenges the study of native protein modifications. Therefore, we performed a systematic study of a large array of protocols on yeast grown under highly controlled conditions. The obtained outcomes, the collected protocols and the mass spectrometric raw data enable the selection of suitable sample preparation elements and furthermore support the evaluation of (native) peptide modifications in yeast, and beyond." @default.
- W4221120871 created "2022-04-03" @default.
- W4221120871 creator A5004841296 @default.
- W4221120871 creator A5008944984 @default.
- W4221120871 creator A5035140801 @default.
- W4221120871 creator A5053910919 @default.
- W4221120871 creator A5073783995 @default.
- W4221120871 date "2022-06-01" @default.
- W4221120871 modified "2023-09-26" @default.
- W4221120871 title "A systematic evaluation of yeast sample preparation protocols for spectral identifications, proteome coverage and post-isolation modifications" @default.
- W4221120871 cites W1149403136 @default.
- W4221120871 cites W1968601944 @default.
- W4221120871 cites W1971887998 @default.
- W4221120871 cites W1978660178 @default.
- W4221120871 cites W1981539242 @default.
- W4221120871 cites W1982537870 @default.
- W4221120871 cites W1990610985 @default.
- W4221120871 cites W1991502938 @default.
- W4221120871 cites W1997740250 @default.
- W4221120871 cites W1997958695 @default.
- W4221120871 cites W2005968685 @default.
- W4221120871 cites W2007009907 @default.
- W4221120871 cites W2007018764 @default.
- W4221120871 cites W2007019025 @default.
- W4221120871 cites W2007176869 @default.
- W4221120871 cites W2009897062 @default.
- W4221120871 cites W2023419047 @default.
- W4221120871 cites W2029674856 @default.
- W4221120871 cites W2031261177 @default.
- W4221120871 cites W2035174879 @default.
- W4221120871 cites W2037199116 @default.
- W4221120871 cites W2038581432 @default.
- W4221120871 cites W2046399369 @default.
- W4221120871 cites W2050869989 @default.
- W4221120871 cites W2050985212 @default.
- W4221120871 cites W2059651000 @default.
- W4221120871 cites W2070086006 @default.
- W4221120871 cites W2076135067 @default.
- W4221120871 cites W2077631134 @default.
- W4221120871 cites W2077796330 @default.
- W4221120871 cites W2081465448 @default.
- W4221120871 cites W2088933296 @default.
- W4221120871 cites W2091915332 @default.
- W4221120871 cites W2101442503 @default.
- W4221120871 cites W2103345380 @default.
- W4221120871 cites W2106043217 @default.
- W4221120871 cites W2121310504 @default.
- W4221120871 cites W2124101452 @default.
- W4221120871 cites W2129754968 @default.
- W4221120871 cites W2132557946 @default.
- W4221120871 cites W2135078307 @default.
- W4221120871 cites W2141018553 @default.
- W4221120871 cites W2144287644 @default.
- W4221120871 cites W2159687660 @default.
- W4221120871 cites W2161651587 @default.
- W4221120871 cites W2162813418 @default.
- W4221120871 cites W2167844024 @default.
- W4221120871 cites W2262864248 @default.
- W4221120871 cites W2329719546 @default.
- W4221120871 cites W2338635723 @default.
- W4221120871 cites W2343251287 @default.
- W4221120871 cites W2395948708 @default.
- W4221120871 cites W2421831709 @default.
- W4221120871 cites W2465480251 @default.
- W4221120871 cites W2574092896 @default.
- W4221120871 cites W2618574456 @default.
- W4221120871 cites W2754224528 @default.
- W4221120871 cites W2785428883 @default.
- W4221120871 cites W2796440706 @default.
- W4221120871 cites W2802153168 @default.
- W4221120871 cites W2804228111 @default.
- W4221120871 cites W2885193379 @default.
- W4221120871 cites W2930099314 @default.
- W4221120871 cites W2984611925 @default.
- W4221120871 cites W2994196318 @default.
- W4221120871 cites W3005144411 @default.
- W4221120871 cites W3007176873 @default.
- W4221120871 cites W3011682025 @default.
- W4221120871 cites W3028715051 @default.
- W4221120871 cites W3087300930 @default.
- W4221120871 cites W3094440668 @default.
- W4221120871 cites W3112600195 @default.
- W4221120871 cites W3118867936 @default.
- W4221120871 cites W3136918052 @default.
- W4221120871 cites W3157859266 @default.
- W4221120871 cites W70082989 @default.
- W4221120871 doi "https://doi.org/10.1016/j.jprot.2022.104576" @default.
- W4221120871 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35351659" @default.
- W4221120871 hasPublicationYear "2022" @default.
- W4221120871 type Work @default.
- W4221120871 citedByCount "5" @default.
- W4221120871 countsByYear W42211208712022 @default.
- W4221120871 countsByYear W42211208712023 @default.
- W4221120871 crossrefType "journal-article" @default.
- W4221120871 hasAuthorship W4221120871A5004841296 @default.
- W4221120871 hasAuthorship W4221120871A5008944984 @default.
- W4221120871 hasAuthorship W4221120871A5035140801 @default.
- W4221120871 hasAuthorship W4221120871A5053910919 @default.