Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221121680> ?p ?o ?g. }
- W4221121680 endingPage "123760" @default.
- W4221121680 startingPage "123760" @default.
- W4221121680 abstract "Estimating parameters and establishing high-accuracy and high-reliability models of photovoltaic (PV) modules by using the actual current-voltage data is important to simulate, model, and optimize the PV systems. Several meta-heuristic optimization techniques have been developed to estimate the parameters of the solar PV models. However, it is still a challenging task to accurately, reliably, and quickly estimate the unknown parameters of PV models. This paper proposes a novel hybrid seagull optimization algorithm (HSOA) for estimating the unknown parameters of PV models effectively and accurately. In proposed HSOA, the personal historical best information is embedded into position search equation to improve the solution precision. A novel nonlinear escaping energy factor based on cosine function is presented for balancing global exploration and local exploitation. The differential mutation strategy is introduced to escape from the local optima. We firstly select twelve classical benchmark test functions to investigate the feasibility of HSOA, and experimental results show that HSOA is superior to most compared methods. Then, HSOA is used for solving parameters estimation problem of three benchmark solar PV models. The comparison results demonstrate that HSOA is superior to BOA, GWO, WOA, HHO, SOA, EEGWO, and ISCA on solution quality, convergence and reliability." @default.
- W4221121680 created "2022-04-03" @default.
- W4221121680 creator A5008228591 @default.
- W4221121680 creator A5016422824 @default.
- W4221121680 creator A5021761851 @default.
- W4221121680 creator A5036775484 @default.
- W4221121680 creator A5060426258 @default.
- W4221121680 creator A5061241637 @default.
- W4221121680 date "2022-06-01" @default.
- W4221121680 modified "2023-09-29" @default.
- W4221121680 title "Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm" @default.
- W4221121680 cites W1963880884 @default.
- W4221121680 cites W1967553610 @default.
- W4221121680 cites W1985147356 @default.
- W4221121680 cites W2001274193 @default.
- W4221121680 cites W2020414814 @default.
- W4221121680 cites W2061438946 @default.
- W4221121680 cites W2085425402 @default.
- W4221121680 cites W2175149977 @default.
- W4221121680 cites W2203972584 @default.
- W4221121680 cites W2290883490 @default.
- W4221121680 cites W2339126074 @default.
- W4221121680 cites W2520936335 @default.
- W4221121680 cites W2586968913 @default.
- W4221121680 cites W2591538890 @default.
- W4221121680 cites W2606339564 @default.
- W4221121680 cites W2613613071 @default.
- W4221121680 cites W2742815819 @default.
- W4221121680 cites W2753628308 @default.
- W4221121680 cites W2758461040 @default.
- W4221121680 cites W2778726590 @default.
- W4221121680 cites W2782513934 @default.
- W4221121680 cites W2790662215 @default.
- W4221121680 cites W2805123994 @default.
- W4221121680 cites W2808223626 @default.
- W4221121680 cites W2888248957 @default.
- W4221121680 cites W2890727546 @default.
- W4221121680 cites W2902421512 @default.
- W4221121680 cites W2903473811 @default.
- W4221121680 cites W2911001524 @default.
- W4221121680 cites W2919979744 @default.
- W4221121680 cites W2942060393 @default.
- W4221121680 cites W2944593088 @default.
- W4221121680 cites W2947525988 @default.
- W4221121680 cites W2954087394 @default.
- W4221121680 cites W2969742549 @default.
- W4221121680 cites W2979370854 @default.
- W4221121680 cites W2985975201 @default.
- W4221121680 cites W2988303294 @default.
- W4221121680 cites W3000240261 @default.
- W4221121680 cites W3000678747 @default.
- W4221121680 cites W3000688604 @default.
- W4221121680 cites W3002359475 @default.
- W4221121680 cites W3002653678 @default.
- W4221121680 cites W3004277779 @default.
- W4221121680 cites W3008523847 @default.
- W4221121680 cites W3009134570 @default.
- W4221121680 cites W3012113472 @default.
- W4221121680 cites W3014400973 @default.
- W4221121680 cites W3020449703 @default.
- W4221121680 cites W3021348825 @default.
- W4221121680 cites W3023074822 @default.
- W4221121680 cites W3023822309 @default.
- W4221121680 cites W3031464311 @default.
- W4221121680 cites W3033396344 @default.
- W4221121680 cites W3037319992 @default.
- W4221121680 cites W3039914015 @default.
- W4221121680 cites W3041966174 @default.
- W4221121680 cites W3043561841 @default.
- W4221121680 cites W3048739668 @default.
- W4221121680 cites W3080163385 @default.
- W4221121680 cites W3081040820 @default.
- W4221121680 cites W3087576977 @default.
- W4221121680 cites W3088317786 @default.
- W4221121680 cites W3088443504 @default.
- W4221121680 cites W3089911346 @default.
- W4221121680 cites W3096726005 @default.
- W4221121680 cites W3100075243 @default.
- W4221121680 cites W3102598125 @default.
- W4221121680 cites W3111996026 @default.
- W4221121680 cites W3112965151 @default.
- W4221121680 cites W3126893871 @default.
- W4221121680 cites W3127814053 @default.
- W4221121680 cites W3129464026 @default.
- W4221121680 cites W3130161300 @default.
- W4221121680 cites W3130312653 @default.
- W4221121680 cites W3132425146 @default.
- W4221121680 cites W3134015841 @default.
- W4221121680 cites W3136621287 @default.
- W4221121680 cites W3144726762 @default.
- W4221121680 cites W3157668703 @default.
- W4221121680 cites W3158907482 @default.
- W4221121680 doi "https://doi.org/10.1016/j.energy.2022.123760" @default.
- W4221121680 hasPublicationYear "2022" @default.
- W4221121680 type Work @default.
- W4221121680 citedByCount "23" @default.
- W4221121680 countsByYear W42211216802022 @default.
- W4221121680 countsByYear W42211216802023 @default.