Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221124814> ?p ?o ?g. }
- W4221124814 endingPage "4236" @default.
- W4221124814 startingPage "4201" @default.
- W4221124814 abstract "Abstract. The COVID-19 lockdown had a large impact on anthropogenic emissions of air pollutants and particularly on nitrogen dioxide (NO2). While the overall NO2 decline over some large cities is well-established, understanding the details remains a challenge since multiple source categories contribute. In this study, a new method of isolation of three components (background NO2, NO2 from urban sources, and NO2 from industrial point sources) is applied to estimate the impact of the COVID-19 lockdown on each of them. The approach is based on fitting satellite data by a statistical model with empirical plume dispersion functions driven by a meteorological reanalysis. Population density and surface elevation data as well as coordinates of industrial sources were used in the analysis. The tropospheric NO2 vertical column density (VCD) values measured by the Tropospheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor over 261 urban areas for the period from 16 March to 15 June 2020 were compared with the average VCD values for the same period in 2018 and 2019. While the background NO2 component remained almost unchanged, the urban NO2 component declined by −18 % to −28 % over most regions. India, South America, and a part of Europe (particularly, Italy, France, and Spain) demonstrated a −40 % to −50 % urban emission decline. In contrast, the decline over urban areas in China, where the lockdown was over during the analysed period, was, on average, only -4.4±8 %. Emissions from large industrial sources in the analysed urban areas varied greatly from region to region from -4.8±6 % for China to -40±10 % for India. Estimated changes in urban emissions are correlated with changes in Google mobility data (the correlation coefficient is 0.62) confirming that changes in traffic were one of the key elements in the decline in urban NO2 emissions. No correlation was found between changes in background NO2 and Google mobility data. On the global scale, the background and urban components were remarkably stable in 2018, 2019, and 2021, with averages of all analysed areas all being within ±2.5 % and suggesting that there were no substantial drifts or shifts in TROPOMI data. The 2020 data are clearly an outlier: in 2020, the mean background component for all analysed areas (without China) was -6.0%±1.2 % and the mean urban component was -26.7±2.6 % or 20σ below the baseline level from the other years." @default.
- W4221124814 created "2022-04-03" @default.
- W4221124814 creator A5022501379 @default.
- W4221124814 creator A5023468732 @default.
- W4221124814 creator A5033437844 @default.
- W4221124814 creator A5039189748 @default.
- W4221124814 creator A5080587144 @default.
- W4221124814 creator A5081702690 @default.
- W4221124814 date "2022-03-31" @default.
- W4221124814 modified "2023-10-18" @default.
- W4221124814 title "Quantifying urban, industrial, and background changes in NO<sub>2</sub> during the COVID-19 lockdown period based on TROPOMI satellite observations" @default.
- W4221124814 cites W1510600477 @default.
- W4221124814 cites W1510661570 @default.
- W4221124814 cites W1885577679 @default.
- W4221124814 cites W1914607329 @default.
- W4221124814 cites W1978186098 @default.
- W4221124814 cites W1981545676 @default.
- W4221124814 cites W1992739954 @default.
- W4221124814 cites W1996713384 @default.
- W4221124814 cites W2004849950 @default.
- W4221124814 cites W2026629099 @default.
- W4221124814 cites W2027404493 @default.
- W4221124814 cites W2039605389 @default.
- W4221124814 cites W2059027591 @default.
- W4221124814 cites W2104474523 @default.
- W4221124814 cites W2114603113 @default.
- W4221124814 cites W2121745948 @default.
- W4221124814 cites W2128393961 @default.
- W4221124814 cites W2144898896 @default.
- W4221124814 cites W2147708064 @default.
- W4221124814 cites W2169262944 @default.
- W4221124814 cites W2171601914 @default.
- W4221124814 cites W2202013945 @default.
- W4221124814 cites W2343017861 @default.
- W4221124814 cites W2398473410 @default.
- W4221124814 cites W2408470791 @default.
- W4221124814 cites W2471088785 @default.
- W4221124814 cites W2604430750 @default.
- W4221124814 cites W2617120448 @default.
- W4221124814 cites W2737721127 @default.
- W4221124814 cites W2791122686 @default.
- W4221124814 cites W2808482263 @default.
- W4221124814 cites W2894294219 @default.
- W4221124814 cites W2916847768 @default.
- W4221124814 cites W2948590107 @default.
- W4221124814 cites W2965465769 @default.
- W4221124814 cites W2972133199 @default.
- W4221124814 cites W2984070964 @default.
- W4221124814 cites W2989504300 @default.
- W4221124814 cites W2995883393 @default.
- W4221124814 cites W2997050358 @default.
- W4221124814 cites W3019923827 @default.
- W4221124814 cites W3020476281 @default.
- W4221124814 cites W3021980696 @default.
- W4221124814 cites W3022606748 @default.
- W4221124814 cites W3022729362 @default.
- W4221124814 cites W3027574333 @default.
- W4221124814 cites W3033069661 @default.
- W4221124814 cites W3034017249 @default.
- W4221124814 cites W3034305671 @default.
- W4221124814 cites W3035041334 @default.
- W4221124814 cites W3036767633 @default.
- W4221124814 cites W3041570623 @default.
- W4221124814 cites W3045133864 @default.
- W4221124814 cites W3045302210 @default.
- W4221124814 cites W3045818358 @default.
- W4221124814 cites W3046957446 @default.
- W4221124814 cites W3048554988 @default.
- W4221124814 cites W3075013849 @default.
- W4221124814 cites W3080890791 @default.
- W4221124814 cites W3084362562 @default.
- W4221124814 cites W3085931676 @default.
- W4221124814 cites W3087582936 @default.
- W4221124814 cites W3091772610 @default.
- W4221124814 cites W3094546955 @default.
- W4221124814 cites W3096427599 @default.
- W4221124814 cites W3097254204 @default.
- W4221124814 cites W3102016469 @default.
- W4221124814 cites W3109456299 @default.
- W4221124814 cites W3112073971 @default.
- W4221124814 cites W3116228050 @default.
- W4221124814 cites W3118312941 @default.
- W4221124814 cites W3121652428 @default.
- W4221124814 cites W3124083458 @default.
- W4221124814 cites W3124593265 @default.
- W4221124814 cites W3126351711 @default.
- W4221124814 cites W3127613292 @default.
- W4221124814 cites W3127862808 @default.
- W4221124814 cites W3133500457 @default.
- W4221124814 cites W3141826898 @default.
- W4221124814 cites W3146685736 @default.
- W4221124814 cites W3157791250 @default.
- W4221124814 cites W3162366314 @default.
- W4221124814 cites W3163216605 @default.
- W4221124814 cites W3171152634 @default.
- W4221124814 cites W3174442635 @default.
- W4221124814 cites W3177320100 @default.
- W4221124814 cites W3182250664 @default.