Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221127682> ?p ?o ?g. }
- W4221127682 abstract "Precise prediction of water quality parameters plays a significant role in making an early alert of water pollution and making better decisions for the management of water resources. As one of the influential indicative parameters, electrical conductivity (EC) has a crucial role in calculating the proportion of mineralization. In this study, the integration of an adaptive hybrid of differential evolution and particle swarm optimization (A-DEPSO) with adaptive neuro fuzzy inference system (ANFIS) model is adopted for EC prediction. The A-DEPSO method uses unique mutation and crossover processes to correspondingly boost global and local search mechanisms. It also uses a refreshing operator to prevent the solution from being caught inside the local optimal solutions. This study uses A-DEPSO optimizer for ANFIS training phase to eliminate defects and predict accurately the EC water quality parameter every month at the Maroon River in the southwest of Iran. Accordingly, the recorded dataset originated from the Tange-Takab station from 1980 to 2016 was operated to develop the ANFIS-A-DEPSO model. Besides, the wavelet analysis was jointed to the proposed algorithm in which the original time series of EC was disintegrated into the sub-time series through two mother wavelets to boost the prediction certainty. In the following, the comparison between statistical metrics of the standalone ANFIS, least-square support vector machine (LSSVM), multivariate adaptive regression spline (MARS), generalized regression neural network (GRNN), wavelet-LSSVM (WLSSVM), wavelet-MARS (W-MARS), wavelet-ANFIS (W-ANFIS) and wavelet-GRNN (W-GRNN) models was implemented. As a result, it was apparent that not only was the W-ANFIS-A-DEPSO model able to rise remarkably the EC prediction certainty, but W-ANFIS-A-DEPSO (R = 0.988, RMSE = 53.841, and PI = 0.485) also had the edge over other models with Dmey mother in terms of EC prediction. Moreover, the W-ANFIS-A-DEPSO can improve the RMSE compared to the standalone ANFIS-DEPSO model, accounting for 80%. Hence, this model can create a closer approximation of EC value through W-ANFIS-A-DEPSO model, which is likely to act as a promising procedure to simulate the prediction of EC data." @default.
- W4221127682 created "2022-04-03" @default.
- W4221127682 creator A5027555569 @default.
- W4221127682 creator A5030772128 @default.
- W4221127682 creator A5037953109 @default.
- W4221127682 creator A5081568297 @default.
- W4221127682 creator A5086946156 @default.
- W4221127682 date "2022-03-23" @default.
- W4221127682 modified "2023-10-05" @default.
- W4221127682 title "An improved adaptive neuro fuzzy inference system model using conjoined metaheuristic algorithms for electrical conductivity prediction" @default.
- W4221127682 cites W1072459456 @default.
- W4221127682 cites W1570834090 @default.
- W4221127682 cites W1596717185 @default.
- W4221127682 cites W1821974783 @default.
- W4221127682 cites W1974704158 @default.
- W4221127682 cites W1976397652 @default.
- W4221127682 cites W1977563642 @default.
- W4221127682 cites W1987557628 @default.
- W4221127682 cites W2000779101 @default.
- W4221127682 cites W2009203913 @default.
- W4221127682 cites W2011704689 @default.
- W4221127682 cites W2014243623 @default.
- W4221127682 cites W2019207321 @default.
- W4221127682 cites W2042031583 @default.
- W4221127682 cites W2047864184 @default.
- W4221127682 cites W2047884674 @default.
- W4221127682 cites W2058050097 @default.
- W4221127682 cites W2061438946 @default.
- W4221127682 cites W2087952909 @default.
- W4221127682 cites W2126050191 @default.
- W4221127682 cites W2149723649 @default.
- W4221127682 cites W2155529731 @default.
- W4221127682 cites W2216444323 @default.
- W4221127682 cites W2256768396 @default.
- W4221127682 cites W2289152296 @default.
- W4221127682 cites W2290883490 @default.
- W4221127682 cites W2336309268 @default.
- W4221127682 cites W2340826226 @default.
- W4221127682 cites W2401706795 @default.
- W4221127682 cites W2410813657 @default.
- W4221127682 cites W2516471936 @default.
- W4221127682 cites W2518675717 @default.
- W4221127682 cites W2519919616 @default.
- W4221127682 cites W2588810797 @default.
- W4221127682 cites W2592227454 @default.
- W4221127682 cites W2592330325 @default.
- W4221127682 cites W2606920954 @default.
- W4221127682 cites W2621614687 @default.
- W4221127682 cites W2759720347 @default.
- W4221127682 cites W2884926439 @default.
- W4221127682 cites W2889552320 @default.
- W4221127682 cites W2897084336 @default.
- W4221127682 cites W2900108582 @default.
- W4221127682 cites W2901864827 @default.
- W4221127682 cites W2903829461 @default.
- W4221127682 cites W2925322067 @default.
- W4221127682 cites W2937853946 @default.
- W4221127682 cites W2944550430 @default.
- W4221127682 cites W2944905287 @default.
- W4221127682 cites W2951791429 @default.
- W4221127682 cites W2969378185 @default.
- W4221127682 cites W2970835038 @default.
- W4221127682 cites W2990991805 @default.
- W4221127682 cites W3000262077 @default.
- W4221127682 cites W3005205558 @default.
- W4221127682 cites W3005657599 @default.
- W4221127682 cites W3006101764 @default.
- W4221127682 cites W3006671182 @default.
- W4221127682 cites W3009964072 @default.
- W4221127682 cites W3010537613 @default.
- W4221127682 cites W3016350595 @default.
- W4221127682 cites W3017254662 @default.
- W4221127682 cites W3028542786 @default.
- W4221127682 cites W3033676263 @default.
- W4221127682 cites W3038102268 @default.
- W4221127682 cites W3039809350 @default.
- W4221127682 cites W3040726294 @default.
- W4221127682 cites W3046781693 @default.
- W4221127682 cites W3046986867 @default.
- W4221127682 cites W305081305 @default.
- W4221127682 cites W3092123241 @default.
- W4221127682 cites W3093998899 @default.
- W4221127682 cites W3107797477 @default.
- W4221127682 cites W3110142610 @default.
- W4221127682 cites W3113372098 @default.
- W4221127682 cites W3125067487 @default.
- W4221127682 cites W3139274269 @default.
- W4221127682 cites W3152345596 @default.
- W4221127682 cites W3154719286 @default.
- W4221127682 cites W3164775596 @default.
- W4221127682 cites W3166893749 @default.
- W4221127682 cites W3177661601 @default.
- W4221127682 cites W3178153218 @default.
- W4221127682 cites W3189230732 @default.
- W4221127682 cites W3195403486 @default.
- W4221127682 cites W3208007843 @default.
- W4221127682 cites W3215413324 @default.
- W4221127682 cites W4298346532 @default.
- W4221127682 doi "https://doi.org/10.1038/s41598-022-08875-w" @default.
- W4221127682 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35322087" @default.