Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221128692> ?p ?o ?g. }
- W4221128692 abstract "Recent evidences have suggested that human microorganisms participate in important biological activities in the human body. The dysfunction of host-microbiota interactions could lead to complex human disorders. The knowledge on host-microbiota interactions can provide valuable insights into understanding the pathological mechanism of diseases. However, it is time-consuming and costly to identify the disorder-specific microbes from the biological haystack merely by routine wet-lab experiments. With the developments in next-generation sequencing and omics-based trials, it is imperative to develop computational prediction models for predicting microbe-disease associations on a large scale.Based on the known microbe-disease associations derived from the Human Microbe-Disease Association Database (HMDAD), the proposed model shows reliable performance with high values of the area under ROC curve (AUC) of 0.9456 and 0.8866 in leave-one-out cross validations and five-fold cross validations, respectively. In case studies of colorectal carcinoma, 80% out of the top-20 predicted microbes have been experimentally confirmed via published literatures.Based on the assumption that functionally similar microbes tend to share the similar interaction patterns with human diseases, we here propose a group based computational model of Bayesian disease-oriented ranking to prioritize the most potential microbes associating with various human diseases. Based on the sequence information of genes, two computational approaches (BLAST+ and MEGA 7) are leveraged to measure the microbe-microbe similarity from different perspectives. The disease-disease similarity is calculated by capturing the hierarchy information from the Medical Subject Headings (MeSH) data. The experimental results illustrate the accuracy and effectiveness of the proposed model. This work is expected to facilitate the characterization and identification of promising microbial biomarkers." @default.
- W4221128692 created "2022-04-03" @default.
- W4221128692 creator A5014121271 @default.
- W4221128692 creator A5017713277 @default.
- W4221128692 creator A5019054788 @default.
- W4221128692 creator A5047290329 @default.
- W4221128692 creator A5047767249 @default.
- W4221128692 creator A5073216396 @default.
- W4221128692 creator A5083469101 @default.
- W4221128692 date "2021-06-01" @default.
- W4221128692 modified "2023-10-16" @default.
- W4221128692 title "GBDR: a Bayesian model for precise prediction of pathogenic microorganisms using 16S rRNA gene sequences" @default.
- W4221128692 cites W1530034318 @default.
- W4221128692 cites W1886978693 @default.
- W4221128692 cites W1976472398 @default.
- W4221128692 cites W2026417691 @default.
- W4221128692 cites W2031821244 @default.
- W4221128692 cites W2033829415 @default.
- W4221128692 cites W2057700969 @default.
- W4221128692 cites W2062661305 @default.
- W4221128692 cites W2089423792 @default.
- W4221128692 cites W2101409192 @default.
- W4221128692 cites W2106479005 @default.
- W4221128692 cites W2107903949 @default.
- W4221128692 cites W2124187902 @default.
- W4221128692 cites W2137015675 @default.
- W4221128692 cites W2139119508 @default.
- W4221128692 cites W2141222510 @default.
- W4221128692 cites W2142678478 @default.
- W4221128692 cites W2143777796 @default.
- W4221128692 cites W2146341019 @default.
- W4221128692 cites W2156145269 @default.
- W4221128692 cites W2254642444 @default.
- W4221128692 cites W2311203695 @default.
- W4221128692 cites W2322763599 @default.
- W4221128692 cites W2565016775 @default.
- W4221128692 cites W2567465856 @default.
- W4221128692 cites W2590194234 @default.
- W4221128692 cites W2594389980 @default.
- W4221128692 cites W2597471102 @default.
- W4221128692 cites W2614433385 @default.
- W4221128692 cites W2725066158 @default.
- W4221128692 cites W2906817762 @default.
- W4221128692 cites W2907670139 @default.
- W4221128692 cites W2960338453 @default.
- W4221128692 cites W3081164334 @default.
- W4221128692 cites W2977393556 @default.
- W4221128692 doi "https://doi.org/10.1186/s12864-022-08423-w" @default.
- W4221128692 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35296232" @default.
- W4221128692 hasPublicationYear "2021" @default.
- W4221128692 type Work @default.
- W4221128692 citedByCount "0" @default.
- W4221128692 crossrefType "journal-article" @default.
- W4221128692 hasAuthorship W4221128692A5014121271 @default.
- W4221128692 hasAuthorship W4221128692A5017713277 @default.
- W4221128692 hasAuthorship W4221128692A5019054788 @default.
- W4221128692 hasAuthorship W4221128692A5047290329 @default.
- W4221128692 hasAuthorship W4221128692A5047767249 @default.
- W4221128692 hasAuthorship W4221128692A5073216396 @default.
- W4221128692 hasAuthorship W4221128692A5083469101 @default.
- W4221128692 hasBestOaLocation W42211286921 @default.
- W4221128692 hasConcept C103278499 @default.
- W4221128692 hasConcept C104317684 @default.
- W4221128692 hasConcept C107673813 @default.
- W4221128692 hasConcept C111472728 @default.
- W4221128692 hasConcept C115961682 @default.
- W4221128692 hasConcept C119857082 @default.
- W4221128692 hasConcept C138885662 @default.
- W4221128692 hasConcept C142724271 @default.
- W4221128692 hasConcept C143121216 @default.
- W4221128692 hasConcept C150194340 @default.
- W4221128692 hasConcept C15151743 @default.
- W4221128692 hasConcept C154945302 @default.
- W4221128692 hasConcept C2779134260 @default.
- W4221128692 hasConcept C2988867146 @default.
- W4221128692 hasConcept C41008148 @default.
- W4221128692 hasConcept C54355233 @default.
- W4221128692 hasConcept C60644358 @default.
- W4221128692 hasConcept C70721500 @default.
- W4221128692 hasConcept C71924100 @default.
- W4221128692 hasConcept C86803240 @default.
- W4221128692 hasConcept C89611455 @default.
- W4221128692 hasConcept C91478284 @default.
- W4221128692 hasConcept C95371953 @default.
- W4221128692 hasConceptScore W4221128692C103278499 @default.
- W4221128692 hasConceptScore W4221128692C104317684 @default.
- W4221128692 hasConceptScore W4221128692C107673813 @default.
- W4221128692 hasConceptScore W4221128692C111472728 @default.
- W4221128692 hasConceptScore W4221128692C115961682 @default.
- W4221128692 hasConceptScore W4221128692C119857082 @default.
- W4221128692 hasConceptScore W4221128692C138885662 @default.
- W4221128692 hasConceptScore W4221128692C142724271 @default.
- W4221128692 hasConceptScore W4221128692C143121216 @default.
- W4221128692 hasConceptScore W4221128692C150194340 @default.
- W4221128692 hasConceptScore W4221128692C15151743 @default.
- W4221128692 hasConceptScore W4221128692C154945302 @default.
- W4221128692 hasConceptScore W4221128692C2779134260 @default.
- W4221128692 hasConceptScore W4221128692C2988867146 @default.
- W4221128692 hasConceptScore W4221128692C41008148 @default.
- W4221128692 hasConceptScore W4221128692C54355233 @default.