Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221130861> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4221130861 endingPage "109434202110675" @default.
- W4221130861 startingPage "109434202110675" @default.
- W4221130861 abstract "Research in medical imaging is hampered by a lack of programming languages that support productive, flexible programming as well as high performance. In search for higher quality imaging, researchers can ideally experiment with novel algorithms using rapid-prototyping languages such as Python. However, to speed up image reconstruction, computational resources such as those of graphics processing units (GPUs) need to be used efficiently. Doing so requires re-programming the algorithms in lower-level programming languages such as CUDA C/C++ or rephrasing them in terms of existing implementations of established algorithms in libraries. The former has a detrimental impact on research productivity and requires system-level programming expertise, and the latter puts severe constraints on the flexibility to research novel algorithms. Here, we investigate the use of the Julia scientific programming language in the domain of PET image reconstruction as a means to obtain both high performance (portability) on GPUs and high programmer productivity and flexibility, all at once, without requiring expert GPU programming knowledge. Using rapid-prototyping features of Julia, we developed basic and performance-optimized GPU implementations of baseline maximum likelihood expectation maximization (MLEM) positron emission tomography (PET) image reconstruction algorithms, as well as multiple existing algorithmic extensions. Thus, we mimic the effort that researchers would have to invest to evaluate the quality and performance potential of algorithms. We evaluate the obtained performance and compare it to state-of-the-art existing implementations. We also analyse and compare the required programming effort. With the Julia implementations, performance in line with existing GPU implementations written in the low-level, unproductive programming language CUDA C is achieved, while requiring much less programming effort, even less than what is needed for much less performant CPU implementations in C++. Switching to Julia as the programming language of choice can therefore boost the productivity of research into medical imaging and deliver excellent performance at a low cost in terms of programming effort." @default.
- W4221130861 created "2022-04-03" @default.
- W4221130861 creator A5047464806 @default.
- W4221130861 creator A5050039659 @default.
- W4221130861 creator A5081420695 @default.
- W4221130861 creator A5090947977 @default.
- W4221130861 date "2022-03-22" @default.
- W4221130861 modified "2023-09-27" @default.
- W4221130861 title "Productively accelerating positron emission tomography image reconstruction on graphics processing units with Julia" @default.
- W4221130861 cites W1593135886 @default.
- W4221130861 cites W1608414943 @default.
- W4221130861 cites W1997483882 @default.
- W4221130861 cites W2028675486 @default.
- W4221130861 cites W2031046539 @default.
- W4221130861 cites W2041379652 @default.
- W4221130861 cites W2055483062 @default.
- W4221130861 cites W2056052439 @default.
- W4221130861 cites W2067382076 @default.
- W4221130861 cites W2069629287 @default.
- W4221130861 cites W2073730246 @default.
- W4221130861 cites W2083989497 @default.
- W4221130861 cites W2108078594 @default.
- W4221130861 cites W2116669464 @default.
- W4221130861 cites W2138884296 @default.
- W4221130861 cites W2149098431 @default.
- W4221130861 cites W2149878648 @default.
- W4221130861 cites W2154744699 @default.
- W4221130861 cites W2171537401 @default.
- W4221130861 cites W2221881442 @default.
- W4221130861 cites W2539372615 @default.
- W4221130861 cites W2786873781 @default.
- W4221130861 cites W2894799553 @default.
- W4221130861 cites W2903637720 @default.
- W4221130861 cites W2938729867 @default.
- W4221130861 cites W3104140109 @default.
- W4221130861 cites W3145825063 @default.
- W4221130861 cites W4246166885 @default.
- W4221130861 cites W4299564810 @default.
- W4221130861 doi "https://doi.org/10.1177/10943420211067520" @default.
- W4221130861 hasPublicationYear "2022" @default.
- W4221130861 type Work @default.
- W4221130861 citedByCount "0" @default.
- W4221130861 crossrefType "journal-article" @default.
- W4221130861 hasAuthorship W4221130861A5047464806 @default.
- W4221130861 hasAuthorship W4221130861A5050039659 @default.
- W4221130861 hasAuthorship W4221130861A5081420695 @default.
- W4221130861 hasAuthorship W4221130861A5090947977 @default.
- W4221130861 hasBestOaLocation W42211308612 @default.
- W4221130861 hasConcept C113775141 @default.
- W4221130861 hasConcept C121684516 @default.
- W4221130861 hasConcept C154945302 @default.
- W4221130861 hasConcept C173608175 @default.
- W4221130861 hasConcept C18945957 @default.
- W4221130861 hasConcept C199360897 @default.
- W4221130861 hasConcept C21442007 @default.
- W4221130861 hasConcept C26713055 @default.
- W4221130861 hasConcept C2778119891 @default.
- W4221130861 hasConcept C34165917 @default.
- W4221130861 hasConcept C41008148 @default.
- W4221130861 hasConcept C519991488 @default.
- W4221130861 hasConcept C63000827 @default.
- W4221130861 hasConceptScore W4221130861C113775141 @default.
- W4221130861 hasConceptScore W4221130861C121684516 @default.
- W4221130861 hasConceptScore W4221130861C154945302 @default.
- W4221130861 hasConceptScore W4221130861C173608175 @default.
- W4221130861 hasConceptScore W4221130861C18945957 @default.
- W4221130861 hasConceptScore W4221130861C199360897 @default.
- W4221130861 hasConceptScore W4221130861C21442007 @default.
- W4221130861 hasConceptScore W4221130861C26713055 @default.
- W4221130861 hasConceptScore W4221130861C2778119891 @default.
- W4221130861 hasConceptScore W4221130861C34165917 @default.
- W4221130861 hasConceptScore W4221130861C41008148 @default.
- W4221130861 hasConceptScore W4221130861C519991488 @default.
- W4221130861 hasConceptScore W4221130861C63000827 @default.
- W4221130861 hasFunder F4320321730 @default.
- W4221130861 hasLocation W42211308611 @default.
- W4221130861 hasLocation W42211308612 @default.
- W4221130861 hasLocation W42211308613 @default.
- W4221130861 hasOpenAccess W4221130861 @default.
- W4221130861 hasPrimaryLocation W42211308611 @default.
- W4221130861 hasRelatedWork W1571147990 @default.
- W4221130861 hasRelatedWork W2117014006 @default.
- W4221130861 hasRelatedWork W2244400696 @default.
- W4221130861 hasRelatedWork W2261838815 @default.
- W4221130861 hasRelatedWork W2319468889 @default.
- W4221130861 hasRelatedWork W3023308094 @default.
- W4221130861 hasRelatedWork W3083829071 @default.
- W4221130861 hasRelatedWork W4221130861 @default.
- W4221130861 hasRelatedWork W4294686023 @default.
- W4221130861 hasRelatedWork W2181742266 @default.
- W4221130861 isParatext "false" @default.
- W4221130861 isRetracted "false" @default.
- W4221130861 workType "article" @default.