Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221131783> ?p ?o ?g. }
- W4221131783 endingPage "2993" @default.
- W4221131783 startingPage "2993" @default.
- W4221131783 abstract "Transport is an area that is developing at a tremendous pace. This development applies not only to electric and hybrid cars appearing more and more often on the road but also to those of an autonomous or semi-autonomous nature. This applies to both passenger cars and vans. In many different publications, you can find a description of a number of benefits of using automated guided vehicles (AGV) for logistics and technical tasks, e.g., in the workplace. An important aspect is the use of knowledge management and machine learning, i.e., artificial intelligence (AI), to design these types of processes. An important issue in the construction of autonomous vehicles is the IT connection of sensors receiving signals from the environment. These signals are data for deep learning algorithms. The data after IT processing enable the decision-making by AI systems, while the used machine learning algorithms and neural networks are also needed for video image analysis in order to identify and classify registered objects. The purpose of this article is to present and verify a mathematical model used to respond to vehicles’ demand for a transport service under set conditions. The optimal conditions of the system to perform the transport task were simulated, and the efficiency of this system and benefits of this choice were determined." @default.
- W4221131783 created "2022-04-03" @default.
- W4221131783 creator A5019717756 @default.
- W4221131783 creator A5025331258 @default.
- W4221131783 creator A5028873106 @default.
- W4221131783 creator A5038471320 @default.
- W4221131783 creator A5046918380 @default.
- W4221131783 date "2022-03-15" @default.
- W4221131783 modified "2023-10-02" @default.
- W4221131783 title "The Planning Process of Transport Tasks for Autonomous Vans—Case Study" @default.
- W4221131783 cites W1546226034 @default.
- W4221131783 cites W1980267052 @default.
- W4221131783 cites W2076464035 @default.
- W4221131783 cites W2136037179 @default.
- W4221131783 cites W2471606517 @default.
- W4221131783 cites W2510546292 @default.
- W4221131783 cites W2512946454 @default.
- W4221131783 cites W2535745353 @default.
- W4221131783 cites W2563480541 @default.
- W4221131783 cites W2586457790 @default.
- W4221131783 cites W2591167107 @default.
- W4221131783 cites W2594690362 @default.
- W4221131783 cites W2596133911 @default.
- W4221131783 cites W2752691047 @default.
- W4221131783 cites W2757493091 @default.
- W4221131783 cites W2767434575 @default.
- W4221131783 cites W2767810614 @default.
- W4221131783 cites W2774831011 @default.
- W4221131783 cites W2783754486 @default.
- W4221131783 cites W2883651959 @default.
- W4221131783 cites W2889454208 @default.
- W4221131783 cites W2892132510 @default.
- W4221131783 cites W2894711653 @default.
- W4221131783 cites W2895528158 @default.
- W4221131783 cites W2895875404 @default.
- W4221131783 cites W2901366116 @default.
- W4221131783 cites W2902267387 @default.
- W4221131783 cites W2905093154 @default.
- W4221131783 cites W2905308143 @default.
- W4221131783 cites W2906170143 @default.
- W4221131783 cites W2908162093 @default.
- W4221131783 cites W2908775571 @default.
- W4221131783 cites W2952321391 @default.
- W4221131783 cites W2969636619 @default.
- W4221131783 cites W2981670637 @default.
- W4221131783 cites W3006834238 @default.
- W4221131783 cites W3008728384 @default.
- W4221131783 cites W3011101171 @default.
- W4221131783 cites W3011758256 @default.
- W4221131783 cites W3012440856 @default.
- W4221131783 cites W3014796928 @default.
- W4221131783 cites W3037861279 @default.
- W4221131783 cites W3038161312 @default.
- W4221131783 cites W3040728142 @default.
- W4221131783 cites W3045837555 @default.
- W4221131783 cites W3052033952 @default.
- W4221131783 cites W3091299989 @default.
- W4221131783 cites W3097589884 @default.
- W4221131783 cites W3106640578 @default.
- W4221131783 cites W3107349624 @default.
- W4221131783 cites W3108630279 @default.
- W4221131783 cites W3109695711 @default.
- W4221131783 cites W3124038936 @default.
- W4221131783 cites W3124420883 @default.
- W4221131783 cites W3128145720 @default.
- W4221131783 cites W3131500255 @default.
- W4221131783 cites W3134403952 @default.
- W4221131783 cites W3135413701 @default.
- W4221131783 cites W3138952217 @default.
- W4221131783 cites W3171462759 @default.
- W4221131783 cites W3171854908 @default.
- W4221131783 cites W3172432117 @default.
- W4221131783 cites W3185396928 @default.
- W4221131783 cites W3195342352 @default.
- W4221131783 cites W3198673085 @default.
- W4221131783 cites W3202201952 @default.
- W4221131783 cites W3213058211 @default.
- W4221131783 cites W3215195244 @default.
- W4221131783 cites W4200047348 @default.
- W4221131783 cites W4200538794 @default.
- W4221131783 cites W4206897486 @default.
- W4221131783 cites W4213233021 @default.
- W4221131783 cites W4213344515 @default.
- W4221131783 cites W4230705837 @default.
- W4221131783 cites W4234205258 @default.
- W4221131783 cites W4237503659 @default.
- W4221131783 cites W2999087568 @default.
- W4221131783 cites W3108724333 @default.
- W4221131783 doi "https://doi.org/10.3390/app12062993" @default.
- W4221131783 hasPublicationYear "2022" @default.
- W4221131783 type Work @default.
- W4221131783 citedByCount "7" @default.
- W4221131783 countsByYear W42211317832022 @default.
- W4221131783 countsByYear W42211317832023 @default.
- W4221131783 crossrefType "journal-article" @default.
- W4221131783 hasAuthorship W4221131783A5019717756 @default.
- W4221131783 hasAuthorship W4221131783A5025331258 @default.
- W4221131783 hasAuthorship W4221131783A5028873106 @default.