Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221134258> ?p ?o ?g. }
- W4221134258 endingPage "12" @default.
- W4221134258 startingPage "1" @default.
- W4221134258 abstract "Social Question Answering sites (SQAs) are online platforms that allow Internet users to ask questions, and obtain answers from others in the community. SQAs have been marred by the problem of low-quality answers. Worryingly, answer quality on SQAs have been reported to be following a downward trajectory in recent years. To this end, existing research has predominantly focused on finding the best answer, or identifying high-quality answers among the available responses. However, such scholarly efforts have not reduced the volume of low-quality answers on SQAs. Therefore, the goal of this research is to extract features in order to weed out low-quality answers as soon as they are posted on SQAs. Data from Stack Exchange was used to carry out the investigation. Informed by the literature, 26 features were extracted. Thereafter, machine learning algorithms were implemented that could correctly identify 85% to 96% of low-quality answers. The key contribution of this research is the development of a system to detect subpar answers on the fly at the time of posting. It is intended to be used as an early warning system that warns users about answer quality at the point of posting." @default.
- W4221134258 created "2022-04-03" @default.
- W4221134258 creator A5023907501 @default.
- W4221134258 creator A5025712960 @default.
- W4221134258 creator A5035277232 @default.
- W4221134258 creator A5040950735 @default.
- W4221134258 date "2022-03-21" @default.
- W4221134258 modified "2023-10-16" @default.
- W4221134258 title "Feature Extraction to Filter Out Low-Quality Answers from Social Question Answering Sites" @default.
- W4221134258 cites W1678356000 @default.
- W4221134258 cites W1961365048 @default.
- W4221134258 cites W1990457736 @default.
- W4221134258 cites W2012189639 @default.
- W4221134258 cites W2037858832 @default.
- W4221134258 cites W2057415299 @default.
- W4221134258 cites W2062020370 @default.
- W4221134258 cites W2062628331 @default.
- W4221134258 cites W2073707085 @default.
- W4221134258 cites W2099769844 @default.
- W4221134258 cites W2106667958 @default.
- W4221134258 cites W2114732275 @default.
- W4221134258 cites W2143337100 @default.
- W4221134258 cites W2145243033 @default.
- W4221134258 cites W2145456657 @default.
- W4221134258 cites W2148143831 @default.
- W4221134258 cites W2161572231 @default.
- W4221134258 cites W2170045560 @default.
- W4221134258 cites W2239327973 @default.
- W4221134258 cites W2276398615 @default.
- W4221134258 cites W2323449293 @default.
- W4221134258 cites W2342901387 @default.
- W4221134258 cites W2517148058 @default.
- W4221134258 cites W2550010073 @default.
- W4221134258 cites W2552734906 @default.
- W4221134258 cites W2561532217 @default.
- W4221134258 cites W2724565823 @default.
- W4221134258 cites W2735827947 @default.
- W4221134258 cites W2767877950 @default.
- W4221134258 cites W2804350326 @default.
- W4221134258 cites W2884757772 @default.
- W4221134258 cites W2894396676 @default.
- W4221134258 cites W2911964244 @default.
- W4221134258 cites W2934933251 @default.
- W4221134258 cites W2949568381 @default.
- W4221134258 cites W2964838593 @default.
- W4221134258 cites W2982180331 @default.
- W4221134258 cites W2984353870 @default.
- W4221134258 cites W2994642280 @default.
- W4221134258 cites W2996747854 @default.
- W4221134258 doi "https://doi.org/10.1080/03772063.2022.2048715" @default.
- W4221134258 hasPublicationYear "2022" @default.
- W4221134258 type Work @default.
- W4221134258 citedByCount "1" @default.
- W4221134258 countsByYear W42211342582023 @default.
- W4221134258 crossrefType "journal-article" @default.
- W4221134258 hasAuthorship W4221134258A5023907501 @default.
- W4221134258 hasAuthorship W4221134258A5025712960 @default.
- W4221134258 hasAuthorship W4221134258A5035277232 @default.
- W4221134258 hasAuthorship W4221134258A5040950735 @default.
- W4221134258 hasBestOaLocation W42211342582 @default.
- W4221134258 hasConcept C106131492 @default.
- W4221134258 hasConcept C110875604 @default.
- W4221134258 hasConcept C111472728 @default.
- W4221134258 hasConcept C136264566 @default.
- W4221134258 hasConcept C136764020 @default.
- W4221134258 hasConcept C138885662 @default.
- W4221134258 hasConcept C154945302 @default.
- W4221134258 hasConcept C162324750 @default.
- W4221134258 hasConcept C23123220 @default.
- W4221134258 hasConcept C2522767166 @default.
- W4221134258 hasConcept C2524010 @default.
- W4221134258 hasConcept C2779530757 @default.
- W4221134258 hasConcept C28719098 @default.
- W4221134258 hasConcept C3019144022 @default.
- W4221134258 hasConcept C31972630 @default.
- W4221134258 hasConcept C33923547 @default.
- W4221134258 hasConcept C41008148 @default.
- W4221134258 hasConcept C44291984 @default.
- W4221134258 hasConcept C90329073 @default.
- W4221134258 hasConceptScore W4221134258C106131492 @default.
- W4221134258 hasConceptScore W4221134258C110875604 @default.
- W4221134258 hasConceptScore W4221134258C111472728 @default.
- W4221134258 hasConceptScore W4221134258C136264566 @default.
- W4221134258 hasConceptScore W4221134258C136764020 @default.
- W4221134258 hasConceptScore W4221134258C138885662 @default.
- W4221134258 hasConceptScore W4221134258C154945302 @default.
- W4221134258 hasConceptScore W4221134258C162324750 @default.
- W4221134258 hasConceptScore W4221134258C23123220 @default.
- W4221134258 hasConceptScore W4221134258C2522767166 @default.
- W4221134258 hasConceptScore W4221134258C2524010 @default.
- W4221134258 hasConceptScore W4221134258C2779530757 @default.
- W4221134258 hasConceptScore W4221134258C28719098 @default.
- W4221134258 hasConceptScore W4221134258C3019144022 @default.
- W4221134258 hasConceptScore W4221134258C31972630 @default.
- W4221134258 hasConceptScore W4221134258C33923547 @default.
- W4221134258 hasConceptScore W4221134258C41008148 @default.
- W4221134258 hasConceptScore W4221134258C44291984 @default.
- W4221134258 hasConceptScore W4221134258C90329073 @default.