Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221134417> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- W4221134417 abstract "Automatic segmentation of medical pictures is a significant stage to extricate valuable data that can assist doctors to detect infections. Eye and systemic infections are known to show themselves in retinal vasculature. Retinal image segmentation is the undertaking of sectioning vessels in retina imagery. Segmentation of retinal vessel is one of the significant strides in retinal image analysis. The order that has been put together for the segmentation of vessel is the chief treatment, cinematography, feature selection, classifier development, testing, education and training in a variety of information and the evaluation of the presentation of the different measures. Many machine learning techniques have already been given by researchers to segment the blood vessels of the images of the retinal fundus of the eyes. A large portion of the accessible retinal vessels division strategies are inclined to more unfortunate outcomes when managing testing circumstances, such as, recognizing low-contrast miniature vessels, vessels with focal reflex, and vessels within the sight of pathologies. We classified the different methods of vascular segmentation of the controlled and uncontrolled practices. Moreover, in this work, we have reviewed and discussed various retinal image segmentation state-of-the-art techniques based on machine learning." @default.
- W4221134417 created "2022-04-03" @default.
- W4221134417 creator A5040250543 @default.
- W4221134417 creator A5088364254 @default.
- W4221134417 date "2022-01-27" @default.
- W4221134417 modified "2023-09-28" @default.
- W4221134417 title "Retinal Image Segmentation based on Machine Learning Techniques" @default.
- W4221134417 doi "https://doi.org/10.1109/confluence52989.2022.9734223" @default.
- W4221134417 hasPublicationYear "2022" @default.
- W4221134417 type Work @default.
- W4221134417 citedByCount "0" @default.
- W4221134417 crossrefType "proceedings-article" @default.
- W4221134417 hasAuthorship W4221134417A5040250543 @default.
- W4221134417 hasAuthorship W4221134417A5088364254 @default.
- W4221134417 hasConcept C118487528 @default.
- W4221134417 hasConcept C124504099 @default.
- W4221134417 hasConcept C154945302 @default.
- W4221134417 hasConcept C2776391266 @default.
- W4221134417 hasConcept C2780827179 @default.
- W4221134417 hasConcept C31972630 @default.
- W4221134417 hasConcept C41008148 @default.
- W4221134417 hasConcept C71924100 @default.
- W4221134417 hasConcept C89600930 @default.
- W4221134417 hasConceptScore W4221134417C118487528 @default.
- W4221134417 hasConceptScore W4221134417C124504099 @default.
- W4221134417 hasConceptScore W4221134417C154945302 @default.
- W4221134417 hasConceptScore W4221134417C2776391266 @default.
- W4221134417 hasConceptScore W4221134417C2780827179 @default.
- W4221134417 hasConceptScore W4221134417C31972630 @default.
- W4221134417 hasConceptScore W4221134417C41008148 @default.
- W4221134417 hasConceptScore W4221134417C71924100 @default.
- W4221134417 hasConceptScore W4221134417C89600930 @default.
- W4221134417 hasLocation W42211344171 @default.
- W4221134417 hasOpenAccess W4221134417 @default.
- W4221134417 hasPrimaryLocation W42211344171 @default.
- W4221134417 hasRelatedWork W11130107 @default.
- W4221134417 hasRelatedWork W11270157 @default.
- W4221134417 hasRelatedWork W12868778 @default.
- W4221134417 hasRelatedWork W1602910 @default.
- W4221134417 hasRelatedWork W2208312 @default.
- W4221134417 hasRelatedWork W6421880 @default.
- W4221134417 hasRelatedWork W6930659 @default.
- W4221134417 hasRelatedWork W7789328 @default.
- W4221134417 hasRelatedWork W9584637 @default.
- W4221134417 hasRelatedWork W3000238 @default.
- W4221134417 isParatext "false" @default.
- W4221134417 isRetracted "false" @default.
- W4221134417 workType "article" @default.