Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221134744> ?p ?o ?g. }
- W4221134744 endingPage "118283" @default.
- W4221134744 startingPage "118283" @default.
- W4221134744 abstract "Watersheds continue to be urbanized across different regions of the United States, increasing the number of impaired waterbodies due to urban stormwater. Using machine learning techniques, this study examined how stormwater quality and watershed characteristics are related at a national scale and compared stormwater quality across watersheds in diverse climates. We analyzed a selection of data from the National Stormwater Quality Database (NSQD) comprising 1,881 stormwater samples taken from 182 watersheds in 26 metropolitan areas in the United States between 1992 and 2003. Using an ensemble clustering algorithm, the stormwater quality in these samples was classified into stormwater signatures, defined as distinct combinations of 9 contaminants including metals (Pb, Zn, Cu), particulates (TSS, TDS), and nutrients (BOD, TP, TKN, NOx). Next, multinomial logistic regression was applied to the NSQD data now classified by signature and combined with climate, weather, land use, and imperviousness data obtained from multiple sources. The results yielded 5 stormwater signatures with distinct aquatic toxicity implications and relationships to climate, weather, land use, and imperviousness: Signature 1 (Ecotoxic and Eutrophic), defined by high median concentrations of contaminants, likely represents the first flush in moderate-to-high imperviousness watersheds; Signature 2 (Reduced Nitrates) represents a wet season signature, particularly for dry climates; Signature 3 (Potentially Eutrophic) represents the first flush in low imperviousness watersheds; Signature 4 (Elevated Particulates and Metals) represents a wet season signature, particularly on warmer days; finally, Signature 5 (Most Dilute) is primarily a regional signature associated with the warm, wet climate of the southeastern US. This study serves as a proof-of-concept demonstrating how machine learning techniques can be used to identify patterns in high-dimensional and highly variable data. Applied to stormwater quality, these techniques identify major patterns in stormwater quality across the United States using a stormwater signature approach, which examines how contaminants co-occur and under what climate, weather, land use, and impervious conditions. The findings point to dominant processes driving stormwater generation and inform watershed monitoring, green infrastructure planning, stormwater quality under climate change, and opportunities for public engagement." @default.
- W4221134744 created "2022-04-03" @default.
- W4221134744 creator A5031109529 @default.
- W4221134744 creator A5033484989 @default.
- W4221134744 creator A5036937246 @default.
- W4221134744 creator A5075791745 @default.
- W4221134744 creator A5083102959 @default.
- W4221134744 date "2022-06-01" @default.
- W4221134744 modified "2023-10-16" @default.
- W4221134744 title "Comparing stormwater quality and watershed typologies across the United States: A machine learning approach" @default.
- W4221134744 cites W1641324461 @default.
- W4221134744 cites W1963492615 @default.
- W4221134744 cites W1989379580 @default.
- W4221134744 cites W2005996681 @default.
- W4221134744 cites W2012371348 @default.
- W4221134744 cites W2022029436 @default.
- W4221134744 cites W2026736178 @default.
- W4221134744 cites W2039161359 @default.
- W4221134744 cites W2049017883 @default.
- W4221134744 cites W2054547735 @default.
- W4221134744 cites W2078696375 @default.
- W4221134744 cites W2085843982 @default.
- W4221134744 cites W2094037178 @default.
- W4221134744 cites W2121223380 @default.
- W4221134744 cites W2134498115 @default.
- W4221134744 cites W2145346369 @default.
- W4221134744 cites W2145947983 @default.
- W4221134744 cites W2170690812 @default.
- W4221134744 cites W2304393989 @default.
- W4221134744 cites W2304660806 @default.
- W4221134744 cites W2587457795 @default.
- W4221134744 cites W2725418369 @default.
- W4221134744 cites W2795451478 @default.
- W4221134744 cites W2801743780 @default.
- W4221134744 cites W2897889941 @default.
- W4221134744 cites W2898962279 @default.
- W4221134744 cites W2902988542 @default.
- W4221134744 cites W2995951039 @default.
- W4221134744 cites W3013438495 @default.
- W4221134744 cites W3025566811 @default.
- W4221134744 cites W3085115309 @default.
- W4221134744 cites W3091532425 @default.
- W4221134744 cites W3120304564 @default.
- W4221134744 cites W3125250438 @default.
- W4221134744 cites W3186299450 @default.
- W4221134744 doi "https://doi.org/10.1016/j.watres.2022.118283" @default.
- W4221134744 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35339052" @default.
- W4221134744 hasPublicationYear "2022" @default.
- W4221134744 type Work @default.
- W4221134744 citedByCount "5" @default.
- W4221134744 countsByYear W42211347442022 @default.
- W4221134744 countsByYear W42211347442023 @default.
- W4221134744 crossrefType "journal-article" @default.
- W4221134744 hasAuthorship W4221134744A5031109529 @default.
- W4221134744 hasAuthorship W4221134744A5033484989 @default.
- W4221134744 hasAuthorship W4221134744A5036937246 @default.
- W4221134744 hasAuthorship W4221134744A5075791745 @default.
- W4221134744 hasAuthorship W4221134744A5083102959 @default.
- W4221134744 hasBestOaLocation W42211347441 @default.
- W4221134744 hasConcept C119857082 @default.
- W4221134744 hasConcept C127413603 @default.
- W4221134744 hasConcept C150547873 @default.
- W4221134744 hasConcept C173051318 @default.
- W4221134744 hasConcept C187320778 @default.
- W4221134744 hasConcept C18903297 @default.
- W4221134744 hasConcept C2780797713 @default.
- W4221134744 hasConcept C39432304 @default.
- W4221134744 hasConcept C41008148 @default.
- W4221134744 hasConcept C50477045 @default.
- W4221134744 hasConcept C76886044 @default.
- W4221134744 hasConcept C86803240 @default.
- W4221134744 hasConceptScore W4221134744C119857082 @default.
- W4221134744 hasConceptScore W4221134744C127413603 @default.
- W4221134744 hasConceptScore W4221134744C150547873 @default.
- W4221134744 hasConceptScore W4221134744C173051318 @default.
- W4221134744 hasConceptScore W4221134744C187320778 @default.
- W4221134744 hasConceptScore W4221134744C18903297 @default.
- W4221134744 hasConceptScore W4221134744C2780797713 @default.
- W4221134744 hasConceptScore W4221134744C39432304 @default.
- W4221134744 hasConceptScore W4221134744C41008148 @default.
- W4221134744 hasConceptScore W4221134744C50477045 @default.
- W4221134744 hasConceptScore W4221134744C76886044 @default.
- W4221134744 hasConceptScore W4221134744C86803240 @default.
- W4221134744 hasLocation W42211347441 @default.
- W4221134744 hasLocation W42211347442 @default.
- W4221134744 hasOpenAccess W4221134744 @default.
- W4221134744 hasPrimaryLocation W42211347441 @default.
- W4221134744 hasRelatedWork W1606999027 @default.
- W4221134744 hasRelatedWork W2026371027 @default.
- W4221134744 hasRelatedWork W2037581799 @default.
- W4221134744 hasRelatedWork W2055705976 @default.
- W4221134744 hasRelatedWork W2154088536 @default.
- W4221134744 hasRelatedWork W2171758530 @default.
- W4221134744 hasRelatedWork W2323070724 @default.
- W4221134744 hasRelatedWork W2522703703 @default.
- W4221134744 hasRelatedWork W3147246668 @default.
- W4221134744 hasRelatedWork W601210851 @default.
- W4221134744 hasVolume "216" @default.