Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221148049> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4221148049 abstract "Techniques of hybridisation and ensemble learning are popular model fusion techniques for improving the predictive power of forecasting methods. With limited research that instigates combining these two promising approaches, this paper focuses on the utility of the Exponential-Smoothing-Recurrent Neural Network (ES-RNN) in the pool of base models for different ensembles. We compare against some state of the art ensembling techniques and arithmetic model averaging as a benchmark. We experiment with the M4 forecasting data set of 100,000 time-series, and the results show that the Feature-based Forecast Model Averaging (FFORMA), on average, is the best technique for late data fusion with the ES-RNN. However, considering the M4's Daily subset of data, stacking was the only successful ensemble at dealing with the case where all base model performances are similar. Our experimental results indicate that we attain state of the art forecasting results compared to N-BEATS as a benchmark. We conclude that model averaging is a more robust ensemble than model selection and stacking strategies. Further, the results show that gradient boosting is superior for implementing ensemble learning strategies." @default.
- W4221148049 created "2022-04-03" @default.
- W4221148049 creator A5040913462 @default.
- W4221148049 creator A5044690353 @default.
- W4221148049 date "2022-03-07" @default.
- W4221148049 modified "2023-09-24" @default.
- W4221148049 title "Evaluating State of the Art, Forecasting Ensembles- and Meta-learning Strategies for Model Fusion" @default.
- W4221148049 doi "https://doi.org/10.48550/arxiv.2203.03279" @default.
- W4221148049 hasPublicationYear "2022" @default.
- W4221148049 type Work @default.
- W4221148049 citedByCount "0" @default.
- W4221148049 crossrefType "posted-content" @default.
- W4221148049 hasAuthorship W4221148049A5040913462 @default.
- W4221148049 hasAuthorship W4221148049A5044690353 @default.
- W4221148049 hasBestOaLocation W42211480491 @default.
- W4221148049 hasConcept C119857082 @default.
- W4221148049 hasConcept C119898033 @default.
- W4221148049 hasConcept C13280743 @default.
- W4221148049 hasConcept C133710760 @default.
- W4221148049 hasConcept C154945302 @default.
- W4221148049 hasConcept C185798385 @default.
- W4221148049 hasConcept C205649164 @default.
- W4221148049 hasConcept C31972630 @default.
- W4221148049 hasConcept C41008148 @default.
- W4221148049 hasConcept C45942800 @default.
- W4221148049 hasConcept C46686674 @default.
- W4221148049 hasConceptScore W4221148049C119857082 @default.
- W4221148049 hasConceptScore W4221148049C119898033 @default.
- W4221148049 hasConceptScore W4221148049C13280743 @default.
- W4221148049 hasConceptScore W4221148049C133710760 @default.
- W4221148049 hasConceptScore W4221148049C154945302 @default.
- W4221148049 hasConceptScore W4221148049C185798385 @default.
- W4221148049 hasConceptScore W4221148049C205649164 @default.
- W4221148049 hasConceptScore W4221148049C31972630 @default.
- W4221148049 hasConceptScore W4221148049C41008148 @default.
- W4221148049 hasConceptScore W4221148049C45942800 @default.
- W4221148049 hasConceptScore W4221148049C46686674 @default.
- W4221148049 hasLocation W42211480491 @default.
- W4221148049 hasOpenAccess W4221148049 @default.
- W4221148049 hasPrimaryLocation W42211480491 @default.
- W4221148049 hasRelatedWork W10697079 @default.
- W4221148049 hasRelatedWork W11883665 @default.
- W4221148049 hasRelatedWork W12010550 @default.
- W4221148049 hasRelatedWork W13692438 @default.
- W4221148049 hasRelatedWork W14430987 @default.
- W4221148049 hasRelatedWork W14993799 @default.
- W4221148049 hasRelatedWork W5006466 @default.
- W4221148049 hasRelatedWork W5410279 @default.
- W4221148049 hasRelatedWork W6479499 @default.
- W4221148049 hasRelatedWork W8202029 @default.
- W4221148049 isParatext "false" @default.
- W4221148049 isRetracted "false" @default.
- W4221148049 workType "article" @default.