Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221149190> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4221149190 abstract "Model-based optimization approaches for monitoring and control, such as model predictive control and optimal state and parameter estimation, have been used for decades in many engineering applications. Models describing the dynamics, constraints, and desired performance criteria are fundamental to model-based approaches. Thanks to recent technological advancements in digitalization, machine learning methods such as deep learning, and computing power, there has been an increasing interest in using machine learning methods alongside model-based approaches for control and estimation. The number of new methods and theoretical findings using machine learning for model-based control and optimization is increasing rapidly. This paper outlines the basic ideas and principles behind an easy-to-use Python toolbox that allows to quickly and efficiently solve machine-learning-supported optimization, model predictive control, and estimation problems. The toolbox leverages state-of-the-art machine learning libraries to train components used to define the problem. It allows to efficiently solve the resulting optimization problems. Machine learning can be used for a broad spectrum of tasks, ranging from model predictive control for stabilization, setpoint tracking, path following, and trajectory tracking to moving horizon estimation and Kalman filtering. For linear systems, it enables quick code generation for embedded MPC applications. HILO-MPC is flexible and adaptable, making it especially suitable for research and fundamental development tasks. Due to its simplicity and numerous already implemented examples, it is also a powerful teaching tool. The usability is underlined, presenting a series of application examples." @default.
- W4221149190 created "2022-04-03" @default.
- W4221149190 creator A5006944353 @default.
- W4221149190 creator A5029388884 @default.
- W4221149190 creator A5040485515 @default.
- W4221149190 creator A5050755091 @default.
- W4221149190 creator A5063230096 @default.
- W4221149190 date "2022-03-25" @default.
- W4221149190 modified "2023-10-16" @default.
- W4221149190 title "Flexible development and evaluation of machine-learning-supported optimal control and estimation methods via HILO-MPC" @default.
- W4221149190 doi "https://doi.org/10.48550/arxiv.2203.13671" @default.
- W4221149190 hasPublicationYear "2022" @default.
- W4221149190 type Work @default.
- W4221149190 citedByCount "0" @default.
- W4221149190 crossrefType "posted-content" @default.
- W4221149190 hasAuthorship W4221149190A5006944353 @default.
- W4221149190 hasAuthorship W4221149190A5029388884 @default.
- W4221149190 hasAuthorship W4221149190A5040485515 @default.
- W4221149190 hasAuthorship W4221149190A5050755091 @default.
- W4221149190 hasAuthorship W4221149190A5063230096 @default.
- W4221149190 hasBestOaLocation W42211491901 @default.
- W4221149190 hasConcept C111919701 @default.
- W4221149190 hasConcept C119857082 @default.
- W4221149190 hasConcept C12302492 @default.
- W4221149190 hasConcept C127413603 @default.
- W4221149190 hasConcept C13280743 @default.
- W4221149190 hasConcept C133731056 @default.
- W4221149190 hasConcept C154945302 @default.
- W4221149190 hasConcept C157286648 @default.
- W4221149190 hasConcept C172205157 @default.
- W4221149190 hasConcept C185798385 @default.
- W4221149190 hasConcept C199360897 @default.
- W4221149190 hasConcept C205649164 @default.
- W4221149190 hasConcept C2775924081 @default.
- W4221149190 hasConcept C2777655017 @default.
- W4221149190 hasConcept C41008148 @default.
- W4221149190 hasConcept C519991488 @default.
- W4221149190 hasConceptScore W4221149190C111919701 @default.
- W4221149190 hasConceptScore W4221149190C119857082 @default.
- W4221149190 hasConceptScore W4221149190C12302492 @default.
- W4221149190 hasConceptScore W4221149190C127413603 @default.
- W4221149190 hasConceptScore W4221149190C13280743 @default.
- W4221149190 hasConceptScore W4221149190C133731056 @default.
- W4221149190 hasConceptScore W4221149190C154945302 @default.
- W4221149190 hasConceptScore W4221149190C157286648 @default.
- W4221149190 hasConceptScore W4221149190C172205157 @default.
- W4221149190 hasConceptScore W4221149190C185798385 @default.
- W4221149190 hasConceptScore W4221149190C199360897 @default.
- W4221149190 hasConceptScore W4221149190C205649164 @default.
- W4221149190 hasConceptScore W4221149190C2775924081 @default.
- W4221149190 hasConceptScore W4221149190C2777655017 @default.
- W4221149190 hasConceptScore W4221149190C41008148 @default.
- W4221149190 hasConceptScore W4221149190C519991488 @default.
- W4221149190 hasLocation W42211491901 @default.
- W4221149190 hasOpenAccess W4221149190 @default.
- W4221149190 hasPrimaryLocation W42211491901 @default.
- W4221149190 hasRelatedWork W1571024744 @default.
- W4221149190 hasRelatedWork W1965736788 @default.
- W4221149190 hasRelatedWork W2396946830 @default.
- W4221149190 hasRelatedWork W2576045864 @default.
- W4221149190 hasRelatedWork W2610886376 @default.
- W4221149190 hasRelatedWork W2745001724 @default.
- W4221149190 hasRelatedWork W2891993883 @default.
- W4221149190 hasRelatedWork W3047589599 @default.
- W4221149190 hasRelatedWork W4285815787 @default.
- W4221149190 hasRelatedWork W4312949351 @default.
- W4221149190 isParatext "false" @default.
- W4221149190 isRetracted "false" @default.
- W4221149190 workType "article" @default.