Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221152020> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4221152020 abstract "Purpose - Inefficient hiring may result in lower productivity and higher training costs. Productivity losses caused by absenteeism at work cost U.S. employers billions of dollars each year. Also, employers typically spend a considerable amount of time managing employees who perform poorly. The purpose of this study is to develop a decision support tool to predict absenteeism among potential employees. Design/methodology/approach - We utilized a popular open-access dataset. In order to categorize absenteeism classes, the data have been preprocessed, and four methods of machine learning classification have been applied: Multinomial Logistic Regression (MLR), Support Vector Machines (SVM), Artificial Neural Networks (ANN), and Random Forests (RF). We selected the best model, based on several validation scores, and compared its performance against the existing model; we then integrated the best model into our proposed web-based for hiring managers. Findings - A web-based decision tool allows hiring managers to make more informed decisions before hiring a potential employee, thus reducing time, financial loss and reducing the probability of economic insolvency. Originality/value - In this paper, we propose a model that is trained based on attributes that can be collected during the hiring process. Furthermore, hiring managers may lack experience in machine learning or do not have the time to spend developing machine learning algorithms. Thus, we propose a web-based interactive tool that can be used without prior knowledge of machine learning algorithms." @default.
- W4221152020 created "2022-04-03" @default.
- W4221152020 creator A5002001465 @default.
- W4221152020 creator A5037114121 @default.
- W4221152020 creator A5050755625 @default.
- W4221152020 creator A5059413306 @default.
- W4221152020 creator A5071553332 @default.
- W4221152020 creator A5083879896 @default.
- W4221152020 date "2022-02-01" @default.
- W4221152020 modified "2023-10-17" @default.
- W4221152020 title "Integration of a machine learning model into a decision support tool to predict absenteeism at work of prospective employees" @default.
- W4221152020 doi "https://doi.org/10.48550/arxiv.2202.03577" @default.
- W4221152020 hasPublicationYear "2022" @default.
- W4221152020 type Work @default.
- W4221152020 citedByCount "1" @default.
- W4221152020 countsByYear W42211520202023 @default.
- W4221152020 crossrefType "posted-content" @default.
- W4221152020 hasAuthorship W4221152020A5002001465 @default.
- W4221152020 hasAuthorship W4221152020A5037114121 @default.
- W4221152020 hasAuthorship W4221152020A5050755625 @default.
- W4221152020 hasAuthorship W4221152020A5059413306 @default.
- W4221152020 hasAuthorship W4221152020A5071553332 @default.
- W4221152020 hasAuthorship W4221152020A5083879896 @default.
- W4221152020 hasBestOaLocation W42211520201 @default.
- W4221152020 hasConcept C117568660 @default.
- W4221152020 hasConcept C119857082 @default.
- W4221152020 hasConcept C12267149 @default.
- W4221152020 hasConcept C139719470 @default.
- W4221152020 hasConcept C154945302 @default.
- W4221152020 hasConcept C162324750 @default.
- W4221152020 hasConcept C169258074 @default.
- W4221152020 hasConcept C187736073 @default.
- W4221152020 hasConcept C204983608 @default.
- W4221152020 hasConcept C27400517 @default.
- W4221152020 hasConcept C41008148 @default.
- W4221152020 hasConceptScore W4221152020C117568660 @default.
- W4221152020 hasConceptScore W4221152020C119857082 @default.
- W4221152020 hasConceptScore W4221152020C12267149 @default.
- W4221152020 hasConceptScore W4221152020C139719470 @default.
- W4221152020 hasConceptScore W4221152020C154945302 @default.
- W4221152020 hasConceptScore W4221152020C162324750 @default.
- W4221152020 hasConceptScore W4221152020C169258074 @default.
- W4221152020 hasConceptScore W4221152020C187736073 @default.
- W4221152020 hasConceptScore W4221152020C204983608 @default.
- W4221152020 hasConceptScore W4221152020C27400517 @default.
- W4221152020 hasConceptScore W4221152020C41008148 @default.
- W4221152020 hasLocation W42211520201 @default.
- W4221152020 hasOpenAccess W4221152020 @default.
- W4221152020 hasPrimaryLocation W42211520201 @default.
- W4221152020 hasRelatedWork W12634471 @default.
- W4221152020 hasRelatedWork W13034104 @default.
- W4221152020 hasRelatedWork W1472067 @default.
- W4221152020 hasRelatedWork W2185224 @default.
- W4221152020 hasRelatedWork W3865299 @default.
- W4221152020 hasRelatedWork W6229082 @default.
- W4221152020 hasRelatedWork W6310906 @default.
- W4221152020 hasRelatedWork W728297 @default.
- W4221152020 hasRelatedWork W7284278 @default.
- W4221152020 hasRelatedWork W9952751 @default.
- W4221152020 isParatext "false" @default.
- W4221152020 isRetracted "false" @default.
- W4221152020 workType "article" @default.