Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221153669> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4221153669 abstract "A real univariate polynomial of degree $n$ is called hyperbolic if all of its $n$ roots are on the real line. Such polynomials appear quite naturally in different applications, for example, in combinatorics and optimization. The focus of this article are families of hyperbolic polynomials which are determined through $k$ linear conditions on the coefficients. The coefficients corresponding to such a family of hyperbolic polynomials form a semi-algebraic set which we call a emph{hyperbolic slice}. We initiate here the study of the geometry of these objects in more detail. The set of hyperbolic polynomials is naturally stratified with respect to the multiplicities of the real zeros and this stratification induces also a stratification on the hyperbolic slices. Our main focus here is on the emph{local extreme points} of hyperbolic slices, i.e., the local extreme points of linear functionals, and we show that these correspond precisely to those hyperbolic polynomials in the hyperbolic slice which have at most $k$ distinct roots and we can show that generically the convex hull of such a family is a polyhedron. Building on these results, we give consequences of our results to the study of symmetric real varieties and symmetric semi-algebraic sets. Here, we show that sets defined by symmetric polynomials which can be expressed sparsely in terms of elementary symmetric polynomials can be sampled on points with few distinct coordinates. This in turn allows for algorithmic simplifications, for example, to verify that such polynomials are non-negative or that a semi-algebraic set defined by such polynomials is empty." @default.
- W4221153669 created "2022-04-03" @default.
- W4221153669 creator A5043861722 @default.
- W4221153669 creator A5051054118 @default.
- W4221153669 date "2022-03-16" @default.
- W4221153669 modified "2023-10-17" @default.
- W4221153669 title "Linear slices of hyperbolic polynomials and positivity of symmetric polynomial functions" @default.
- W4221153669 doi "https://doi.org/10.48550/arxiv.2203.08727" @default.
- W4221153669 hasPublicationYear "2022" @default.
- W4221153669 type Work @default.
- W4221153669 citedByCount "2" @default.
- W4221153669 countsByYear W42211536692022 @default.
- W4221153669 crossrefType "posted-content" @default.
- W4221153669 hasAuthorship W4221153669A5043861722 @default.
- W4221153669 hasAuthorship W4221153669A5051054118 @default.
- W4221153669 hasBestOaLocation W42211536691 @default.
- W4221153669 hasConcept C100701293 @default.
- W4221153669 hasConcept C101044782 @default.
- W4221153669 hasConcept C114614502 @default.
- W4221153669 hasConcept C134306372 @default.
- W4221153669 hasConcept C192943249 @default.
- W4221153669 hasConcept C202444582 @default.
- W4221153669 hasConcept C33923547 @default.
- W4221153669 hasConcept C3527866 @default.
- W4221153669 hasConcept C52153879 @default.
- W4221153669 hasConcept C59822182 @default.
- W4221153669 hasConcept C86803240 @default.
- W4221153669 hasConcept C88548481 @default.
- W4221153669 hasConcept C90119067 @default.
- W4221153669 hasConcept C9376300 @default.
- W4221153669 hasConceptScore W4221153669C100701293 @default.
- W4221153669 hasConceptScore W4221153669C101044782 @default.
- W4221153669 hasConceptScore W4221153669C114614502 @default.
- W4221153669 hasConceptScore W4221153669C134306372 @default.
- W4221153669 hasConceptScore W4221153669C192943249 @default.
- W4221153669 hasConceptScore W4221153669C202444582 @default.
- W4221153669 hasConceptScore W4221153669C33923547 @default.
- W4221153669 hasConceptScore W4221153669C3527866 @default.
- W4221153669 hasConceptScore W4221153669C52153879 @default.
- W4221153669 hasConceptScore W4221153669C59822182 @default.
- W4221153669 hasConceptScore W4221153669C86803240 @default.
- W4221153669 hasConceptScore W4221153669C88548481 @default.
- W4221153669 hasConceptScore W4221153669C90119067 @default.
- W4221153669 hasConceptScore W4221153669C9376300 @default.
- W4221153669 hasLocation W42211536691 @default.
- W4221153669 hasOpenAccess W4221153669 @default.
- W4221153669 hasPrimaryLocation W42211536691 @default.
- W4221153669 hasRelatedWork W1997399992 @default.
- W4221153669 hasRelatedWork W2009896212 @default.
- W4221153669 hasRelatedWork W2020855749 @default.
- W4221153669 hasRelatedWork W2038106543 @default.
- W4221153669 hasRelatedWork W2043596198 @default.
- W4221153669 hasRelatedWork W2094091116 @default.
- W4221153669 hasRelatedWork W2156697727 @default.
- W4221153669 hasRelatedWork W337130721 @default.
- W4221153669 hasRelatedWork W4210984194 @default.
- W4221153669 hasRelatedWork W922655137 @default.
- W4221153669 isParatext "false" @default.
- W4221153669 isRetracted "false" @default.
- W4221153669 workType "article" @default.