Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221156971> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4221156971 abstract "This paper studies machine learning-assisted maximum likelihood (ML) and maximum a posteriori (MAP) receivers for a communication system with memory, which can be modelled by a trellis diagram. The prerequisite of the ML/MAP receiver is to obtain the likelihood of the received samples under different state transitions of the trellis diagram, which relies on the channel state information (CSI) and the distribution of the channel noise. We propose to learn the trellis diagram real-time using an artificial neural network (ANN) trained by a pilot sequence. This approach, termed as the online learning of trellis diagram (OLTD), requires neither the CSI nor statistics of the noise, and can be incorporated into the classic Viterbi and the BCJR algorithm. %Compared with the state-of-the-art ViterbiNet and BCJRNet algorithms in the literature, it It is shown to significantly outperform the model-based methods in non-Gaussian channels. It requires much less training overhead than the state-of-the-art methods, and hence is more feasible for real implementations. As an illustrative example, the OLTD-based BCJR is applied to a Bluetooth low energy (BLE) receiver trained only by a 256-sample pilot sequence. Moreover, the OLTD-based BCJR can accommodate for turbo equalization, while the state-of-the-art BCJRNet/ViterbiNet cannot. As an interesting by-product, we propose an enhancement to the BLE standard by introducing a bit interleaver to its physical layer; the resultant improvement of the receiver sensitivity can make it a better fit for some Internet of Things (IoT) communications." @default.
- W4221156971 created "2022-04-03" @default.
- W4221156971 creator A5049203751 @default.
- W4221156971 creator A5054096196 @default.
- W4221156971 creator A5054429473 @default.
- W4221156971 date "2022-02-21" @default.
- W4221156971 modified "2023-10-16" @default.
- W4221156971 title "Online Learning of Trellis Diagram Using Neural Network for Robust Detection and Decoding" @default.
- W4221156971 doi "https://doi.org/10.48550/arxiv.2202.10635" @default.
- W4221156971 hasPublicationYear "2022" @default.
- W4221156971 type Work @default.
- W4221156971 citedByCount "0" @default.
- W4221156971 crossrefType "posted-content" @default.
- W4221156971 hasAuthorship W4221156971A5049203751 @default.
- W4221156971 hasAuthorship W4221156971A5054096196 @default.
- W4221156971 hasAuthorship W4221156971A5054429473 @default.
- W4221156971 hasBestOaLocation W42211569711 @default.
- W4221156971 hasConcept C105795698 @default.
- W4221156971 hasConcept C11413529 @default.
- W4221156971 hasConcept C114504821 @default.
- W4221156971 hasConcept C127162648 @default.
- W4221156971 hasConcept C154945302 @default.
- W4221156971 hasConcept C157125643 @default.
- W4221156971 hasConcept C169334058 @default.
- W4221156971 hasConcept C2781235587 @default.
- W4221156971 hasConcept C33923547 @default.
- W4221156971 hasConcept C41008148 @default.
- W4221156971 hasConcept C49781872 @default.
- W4221156971 hasConcept C57273362 @default.
- W4221156971 hasConcept C60582962 @default.
- W4221156971 hasConcept C64948573 @default.
- W4221156971 hasConcept C76155785 @default.
- W4221156971 hasConcept C78944582 @default.
- W4221156971 hasConcept C9810830 @default.
- W4221156971 hasConceptScore W4221156971C105795698 @default.
- W4221156971 hasConceptScore W4221156971C11413529 @default.
- W4221156971 hasConceptScore W4221156971C114504821 @default.
- W4221156971 hasConceptScore W4221156971C127162648 @default.
- W4221156971 hasConceptScore W4221156971C154945302 @default.
- W4221156971 hasConceptScore W4221156971C157125643 @default.
- W4221156971 hasConceptScore W4221156971C169334058 @default.
- W4221156971 hasConceptScore W4221156971C2781235587 @default.
- W4221156971 hasConceptScore W4221156971C33923547 @default.
- W4221156971 hasConceptScore W4221156971C41008148 @default.
- W4221156971 hasConceptScore W4221156971C49781872 @default.
- W4221156971 hasConceptScore W4221156971C57273362 @default.
- W4221156971 hasConceptScore W4221156971C60582962 @default.
- W4221156971 hasConceptScore W4221156971C64948573 @default.
- W4221156971 hasConceptScore W4221156971C76155785 @default.
- W4221156971 hasConceptScore W4221156971C78944582 @default.
- W4221156971 hasConceptScore W4221156971C9810830 @default.
- W4221156971 hasLocation W42211569711 @default.
- W4221156971 hasOpenAccess W4221156971 @default.
- W4221156971 hasPrimaryLocation W42211569711 @default.
- W4221156971 hasRelatedWork W1553894767 @default.
- W4221156971 hasRelatedWork W2077824016 @default.
- W4221156971 hasRelatedWork W2095996323 @default.
- W4221156971 hasRelatedWork W2106004516 @default.
- W4221156971 hasRelatedWork W2126791752 @default.
- W4221156971 hasRelatedWork W2148412668 @default.
- W4221156971 hasRelatedWork W2148543451 @default.
- W4221156971 hasRelatedWork W2155469931 @default.
- W4221156971 hasRelatedWork W2159169051 @default.
- W4221156971 hasRelatedWork W2736738594 @default.
- W4221156971 isParatext "false" @default.
- W4221156971 isRetracted "false" @default.
- W4221156971 workType "article" @default.