Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221160079> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4221160079 abstract "Deep learning can be used to drastically decrease the processing time of parameter estimation for coalescing binaries of compact objects including black holes and neutron stars detected in gravitational waves (GWs). As a first step, we present two neural network models trained to rapidly estimate the posterior distributions of the chirp mass and mass ratio of a detected binary black hole system from the GW strain data of LIGO Hanford and Livingston Observatories. Using these parameters the component masses can be predicted, which has implications for the prediction of the likelihood that a merger contains a neutron star. The results are compared to the 'gold standard' of parameter estimation of gravitational waves used by the LIGO-Virgo Collaboration (LVC), LALInference. Our models predict posterior distributions consistent with that from LALInference while using orders of magnitude less processing time once the models are trained. The median predictions are within the 90% credible intervals of LALInference for all predicted parameters when tested on real binary black hole events detected during the LVC's first and second observing runs. We argue that deep learning has strong potential for low-latency high-accuracy parameter estimation suitable for real-time GW search pipelines." @default.
- W4221160079 created "2022-04-03" @default.
- W4221160079 creator A5020003228 @default.
- W4221160079 creator A5037960633 @default.
- W4221160079 creator A5040510580 @default.
- W4221160079 creator A5044206814 @default.
- W4221160079 creator A5048065413 @default.
- W4221160079 date "2022-01-26" @default.
- W4221160079 modified "2023-09-27" @default.
- W4221160079 title "Rapid Mass Parameter Estimation of Binary Black Hole Coalescences Using Deep Learning" @default.
- W4221160079 doi "https://doi.org/10.48550/arxiv.2201.11126" @default.
- W4221160079 hasPublicationYear "2022" @default.
- W4221160079 type Work @default.
- W4221160079 citedByCount "0" @default.
- W4221160079 crossrefType "posted-content" @default.
- W4221160079 hasAuthorship W4221160079A5020003228 @default.
- W4221160079 hasAuthorship W4221160079A5037960633 @default.
- W4221160079 hasAuthorship W4221160079A5040510580 @default.
- W4221160079 hasAuthorship W4221160079A5044206814 @default.
- W4221160079 hasAuthorship W4221160079A5048065413 @default.
- W4221160079 hasBestOaLocation W42211600791 @default.
- W4221160079 hasConcept C104954878 @default.
- W4221160079 hasConcept C11413529 @default.
- W4221160079 hasConcept C120665830 @default.
- W4221160079 hasConcept C121332964 @default.
- W4221160079 hasConcept C132794960 @default.
- W4221160079 hasConcept C167928553 @default.
- W4221160079 hasConcept C190330329 @default.
- W4221160079 hasConcept C192887742 @default.
- W4221160079 hasConcept C2780688901 @default.
- W4221160079 hasConcept C31258907 @default.
- W4221160079 hasConcept C32602459 @default.
- W4221160079 hasConcept C33923547 @default.
- W4221160079 hasConcept C41008148 @default.
- W4221160079 hasConcept C44870925 @default.
- W4221160079 hasConcept C48372109 @default.
- W4221160079 hasConcept C50341732 @default.
- W4221160079 hasConcept C520434653 @default.
- W4221160079 hasConcept C74172769 @default.
- W4221160079 hasConcept C89305328 @default.
- W4221160079 hasConcept C94375191 @default.
- W4221160079 hasConceptScore W4221160079C104954878 @default.
- W4221160079 hasConceptScore W4221160079C11413529 @default.
- W4221160079 hasConceptScore W4221160079C120665830 @default.
- W4221160079 hasConceptScore W4221160079C121332964 @default.
- W4221160079 hasConceptScore W4221160079C132794960 @default.
- W4221160079 hasConceptScore W4221160079C167928553 @default.
- W4221160079 hasConceptScore W4221160079C190330329 @default.
- W4221160079 hasConceptScore W4221160079C192887742 @default.
- W4221160079 hasConceptScore W4221160079C2780688901 @default.
- W4221160079 hasConceptScore W4221160079C31258907 @default.
- W4221160079 hasConceptScore W4221160079C32602459 @default.
- W4221160079 hasConceptScore W4221160079C33923547 @default.
- W4221160079 hasConceptScore W4221160079C41008148 @default.
- W4221160079 hasConceptScore W4221160079C44870925 @default.
- W4221160079 hasConceptScore W4221160079C48372109 @default.
- W4221160079 hasConceptScore W4221160079C50341732 @default.
- W4221160079 hasConceptScore W4221160079C520434653 @default.
- W4221160079 hasConceptScore W4221160079C74172769 @default.
- W4221160079 hasConceptScore W4221160079C89305328 @default.
- W4221160079 hasConceptScore W4221160079C94375191 @default.
- W4221160079 hasLocation W42211600791 @default.
- W4221160079 hasOpenAccess W4221160079 @default.
- W4221160079 hasPrimaryLocation W42211600791 @default.
- W4221160079 hasRelatedWork W1987611310 @default.
- W4221160079 hasRelatedWork W2160753031 @default.
- W4221160079 hasRelatedWork W2614849373 @default.
- W4221160079 hasRelatedWork W2971836485 @default.
- W4221160079 hasRelatedWork W3121782149 @default.
- W4221160079 hasRelatedWork W3130120945 @default.
- W4221160079 hasRelatedWork W3217440745 @default.
- W4221160079 hasRelatedWork W4221160079 @default.
- W4221160079 hasRelatedWork W4288694716 @default.
- W4221160079 hasRelatedWork W4221155100 @default.
- W4221160079 isParatext "false" @default.
- W4221160079 isRetracted "false" @default.
- W4221160079 workType "article" @default.