Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221161364> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4221161364 abstract "Marginalization of latent variables or nuisance parameters is a fundamental aspect of Bayesian inference and uncertainty quantification. In this work, we focus on scalable marginalization of latent variables in modeling correlated data, such as spatio-temporal or functional observations. We first introduce Gaussian processes (GPs) for modeling correlated data and highlight the computational challenge, where the computational complexity increases cubically fast along with the number of observations. We then review the connection between the state space model and GPs with Mat{'e}rn covariance for temporal inputs. The Kalman filter and Rauch-Tung-Striebel smoother were introduced as a scalable marginalization technique for computing the likelihood and making predictions of GPs without approximation. We then introduce recent efforts on extending the scalable marginalization idea to the linear model of coregionalization for multivariate correlated output and spatio-temporal observations. In the final part of this work, we introduce a novel marginalization technique to estimate interaction kernels and forecast particle trajectories. The achievement lies in the sparse representation of covariance function, then applying conjugate gradient for solving the computational challenges and improving predictive accuracy. The computational advances achieved in this work outline a wide range of applications in molecular dynamic simulation, cellular migration, and agent-based models." @default.
- W4221161364 created "2022-04-03" @default.
- W4221161364 creator A5058836877 @default.
- W4221161364 creator A5072475135 @default.
- W4221161364 creator A5078840209 @default.
- W4221161364 creator A5080214850 @default.
- W4221161364 date "2022-03-16" @default.
- W4221161364 modified "2023-09-25" @default.
- W4221161364 title "Scalable marginalization of correlated latent variables with applications to learning particle interaction kernels" @default.
- W4221161364 doi "https://doi.org/10.48550/arxiv.2203.08389" @default.
- W4221161364 hasPublicationYear "2022" @default.
- W4221161364 type Work @default.
- W4221161364 citedByCount "0" @default.
- W4221161364 crossrefType "posted-content" @default.
- W4221161364 hasAuthorship W4221161364A5058836877 @default.
- W4221161364 hasAuthorship W4221161364A5072475135 @default.
- W4221161364 hasAuthorship W4221161364A5078840209 @default.
- W4221161364 hasAuthorship W4221161364A5080214850 @default.
- W4221161364 hasBestOaLocation W42211613641 @default.
- W4221161364 hasConcept C105795698 @default.
- W4221161364 hasConcept C107673813 @default.
- W4221161364 hasConcept C11413529 @default.
- W4221161364 hasConcept C119857082 @default.
- W4221161364 hasConcept C121332964 @default.
- W4221161364 hasConcept C137250428 @default.
- W4221161364 hasConcept C154945302 @default.
- W4221161364 hasConcept C157286648 @default.
- W4221161364 hasConcept C160234255 @default.
- W4221161364 hasConcept C163716315 @default.
- W4221161364 hasConcept C167928553 @default.
- W4221161364 hasConcept C178650346 @default.
- W4221161364 hasConcept C185142706 @default.
- W4221161364 hasConcept C2776214188 @default.
- W4221161364 hasConcept C33923547 @default.
- W4221161364 hasConcept C41008148 @default.
- W4221161364 hasConcept C48044578 @default.
- W4221161364 hasConcept C51167844 @default.
- W4221161364 hasConcept C60229501 @default.
- W4221161364 hasConcept C61326573 @default.
- W4221161364 hasConcept C62520636 @default.
- W4221161364 hasConcept C76155785 @default.
- W4221161364 hasConcept C77088390 @default.
- W4221161364 hasConcept C89106044 @default.
- W4221161364 hasConceptScore W4221161364C105795698 @default.
- W4221161364 hasConceptScore W4221161364C107673813 @default.
- W4221161364 hasConceptScore W4221161364C11413529 @default.
- W4221161364 hasConceptScore W4221161364C119857082 @default.
- W4221161364 hasConceptScore W4221161364C121332964 @default.
- W4221161364 hasConceptScore W4221161364C137250428 @default.
- W4221161364 hasConceptScore W4221161364C154945302 @default.
- W4221161364 hasConceptScore W4221161364C157286648 @default.
- W4221161364 hasConceptScore W4221161364C160234255 @default.
- W4221161364 hasConceptScore W4221161364C163716315 @default.
- W4221161364 hasConceptScore W4221161364C167928553 @default.
- W4221161364 hasConceptScore W4221161364C178650346 @default.
- W4221161364 hasConceptScore W4221161364C185142706 @default.
- W4221161364 hasConceptScore W4221161364C2776214188 @default.
- W4221161364 hasConceptScore W4221161364C33923547 @default.
- W4221161364 hasConceptScore W4221161364C41008148 @default.
- W4221161364 hasConceptScore W4221161364C48044578 @default.
- W4221161364 hasConceptScore W4221161364C51167844 @default.
- W4221161364 hasConceptScore W4221161364C60229501 @default.
- W4221161364 hasConceptScore W4221161364C61326573 @default.
- W4221161364 hasConceptScore W4221161364C62520636 @default.
- W4221161364 hasConceptScore W4221161364C76155785 @default.
- W4221161364 hasConceptScore W4221161364C77088390 @default.
- W4221161364 hasConceptScore W4221161364C89106044 @default.
- W4221161364 hasLocation W42211613641 @default.
- W4221161364 hasOpenAccess W4221161364 @default.
- W4221161364 hasPrimaryLocation W42211613641 @default.
- W4221161364 hasRelatedWork W1567545310 @default.
- W4221161364 hasRelatedWork W2022434169 @default.
- W4221161364 hasRelatedWork W2063356007 @default.
- W4221161364 hasRelatedWork W2154788797 @default.
- W4221161364 hasRelatedWork W2619336040 @default.
- W4221161364 hasRelatedWork W2735005031 @default.
- W4221161364 hasRelatedWork W2766462267 @default.
- W4221161364 hasRelatedWork W2902390001 @default.
- W4221161364 hasRelatedWork W3002473118 @default.
- W4221161364 hasRelatedWork W4221161364 @default.
- W4221161364 isParatext "false" @default.
- W4221161364 isRetracted "false" @default.
- W4221161364 workType "article" @default.