Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221161639> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4221161639 abstract "The rapid development of Machine Learning (ML) has demonstrated superior performance in many areas, such as computer vision, video and speech recognition. It has now been increasingly leveraged in software systems to automate the core tasks. However, how to securely develop the machine learning-based modern software systems (MLBSS) remains a big challenge, for which the insufficient consideration will largely limit its application in safety-critical domains. One concern is that the present MLBSS development tends to be rush, and the latent vulnerabilities and privacy issues exposed to external users and attackers will be largely neglected and hard to be identified. Additionally, machine learning-based software systems exhibit different liabilities towards novel vulnerabilities at different development stages from requirement analysis to system maintenance, due to its inherent limitations from the model and data and the external adversary capabilities. In this work, we consider that security for machine learning-based software systems may arise by inherent system defects or external adversarial attacks, and the secure development practices should be taken throughout the whole lifecycle. While machine learning has become a new threat domain for existing software engineering practices, there is no such review work covering the topic. Overall, we present a holistic review regarding the security for MLBSS, which covers a systematic understanding from a structure review of three distinct aspects in terms of security threats. Moreover, it provides a thorough state-of-the-practice for MLBSS secure development. Finally, we summarise the literature for system security assurance, and motivate the future research directions with open challenges. We anticipate this work provides sufficient discussion and novel insights to incorporate system security engineering for future exploration." @default.
- W4221161639 created "2022-04-03" @default.
- W4221161639 creator A5017705548 @default.
- W4221161639 creator A5086004140 @default.
- W4221161639 date "2022-01-12" @default.
- W4221161639 modified "2023-09-24" @default.
- W4221161639 title "Security for Machine Learning-based Software Systems: a survey of threats, practices and challenges" @default.
- W4221161639 doi "https://doi.org/10.48550/arxiv.2201.04736" @default.
- W4221161639 hasPublicationYear "2022" @default.
- W4221161639 type Work @default.
- W4221161639 citedByCount "0" @default.
- W4221161639 crossrefType "posted-content" @default.
- W4221161639 hasAuthorship W4221161639A5017705548 @default.
- W4221161639 hasAuthorship W4221161639A5086004140 @default.
- W4221161639 hasBestOaLocation W42211616391 @default.
- W4221161639 hasConcept C105339364 @default.
- W4221161639 hasConcept C115903868 @default.
- W4221161639 hasConcept C134306372 @default.
- W4221161639 hasConcept C154945302 @default.
- W4221161639 hasConcept C199360897 @default.
- W4221161639 hasConcept C22680326 @default.
- W4221161639 hasConcept C2522767166 @default.
- W4221161639 hasConcept C2777904410 @default.
- W4221161639 hasConcept C29983905 @default.
- W4221161639 hasConcept C33923547 @default.
- W4221161639 hasConcept C36503486 @default.
- W4221161639 hasConcept C37736160 @default.
- W4221161639 hasConcept C38652104 @default.
- W4221161639 hasConcept C41008148 @default.
- W4221161639 hasConcept C41065033 @default.
- W4221161639 hasConcept C527648132 @default.
- W4221161639 hasConcept C529173508 @default.
- W4221161639 hasConcept C62913178 @default.
- W4221161639 hasConceptScore W4221161639C105339364 @default.
- W4221161639 hasConceptScore W4221161639C115903868 @default.
- W4221161639 hasConceptScore W4221161639C134306372 @default.
- W4221161639 hasConceptScore W4221161639C154945302 @default.
- W4221161639 hasConceptScore W4221161639C199360897 @default.
- W4221161639 hasConceptScore W4221161639C22680326 @default.
- W4221161639 hasConceptScore W4221161639C2522767166 @default.
- W4221161639 hasConceptScore W4221161639C2777904410 @default.
- W4221161639 hasConceptScore W4221161639C29983905 @default.
- W4221161639 hasConceptScore W4221161639C33923547 @default.
- W4221161639 hasConceptScore W4221161639C36503486 @default.
- W4221161639 hasConceptScore W4221161639C37736160 @default.
- W4221161639 hasConceptScore W4221161639C38652104 @default.
- W4221161639 hasConceptScore W4221161639C41008148 @default.
- W4221161639 hasConceptScore W4221161639C41065033 @default.
- W4221161639 hasConceptScore W4221161639C527648132 @default.
- W4221161639 hasConceptScore W4221161639C529173508 @default.
- W4221161639 hasConceptScore W4221161639C62913178 @default.
- W4221161639 hasLocation W42211616391 @default.
- W4221161639 hasOpenAccess W4221161639 @default.
- W4221161639 hasPrimaryLocation W42211616391 @default.
- W4221161639 hasRelatedWork W2000783865 @default.
- W4221161639 hasRelatedWork W2008308543 @default.
- W4221161639 hasRelatedWork W2085025225 @default.
- W4221161639 hasRelatedWork W2113607124 @default.
- W4221161639 hasRelatedWork W2139199024 @default.
- W4221161639 hasRelatedWork W2155206946 @default.
- W4221161639 hasRelatedWork W3028090072 @default.
- W4221161639 hasRelatedWork W3145182328 @default.
- W4221161639 hasRelatedWork W4206646452 @default.
- W4221161639 hasRelatedWork W4241507983 @default.
- W4221161639 isParatext "false" @default.
- W4221161639 isRetracted "false" @default.
- W4221161639 workType "article" @default.