Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223434316> ?p ?o ?g. }
- W4223434316 endingPage "105479" @default.
- W4223434316 startingPage "105479" @default.
- W4223434316 abstract "High blood pressure early screening remains a challenge due to the lack of symptoms associated with it. Accordingly, noninvasive methods based on photoplethysmography (PPG) or clinical data analysis and the training of machine learning techniques for hypertension detection have been proposed in the literature. Nevertheless, several challenges arise when analyzing PPG signals, such as the need for high-quality signals for morphological feature extraction from PPG related to high blood pressure. On the other hand, another popular approach is to use deep learning techniques to avoid the feature extraction process. Nonetheless, this method requires high computational power and behaves as a black-box approach, which impedes application in a medical context. In addition, considering only the socio-demographic and clinical data of the subject does not allow constant monitoring. This work proposes to use the wavelet scattering transform as a feature extraction technique to obtain features from PPG data and combine it with clinical data to detect early hypertension stages by applying Early and Late Fusion. This analysis showed that the PPG features derived from the wavelet scattering transform combined with a support vector machine can classify normotension and prehypertension with an accuracy of 71.42% and an F1-score of 76%. However, classifying normotension and prehypertension by considering both the features extracted from PPG signals through wavelet scattering transform and clinical variables such as age, body mass index, and heart rate by either Late Fusion or Early Fusion did not provide better performance than considering each data type separately in terms of accuracy and F1-score." @default.
- W4223434316 created "2022-04-14" @default.
- W4223434316 creator A5002627616 @default.
- W4223434316 creator A5043901658 @default.
- W4223434316 creator A5087755485 @default.
- W4223434316 date "2022-06-01" @default.
- W4223434316 modified "2023-10-18" @default.
- W4223434316 title "A machine learning approach for hypertension detection based on photoplethysmography and clinical data" @default.
- W4223434316 cites W1957864943 @default.
- W4223434316 cites W1964337445 @default.
- W4223434316 cites W1974417138 @default.
- W4223434316 cites W1987552279 @default.
- W4223434316 cites W1994906459 @default.
- W4223434316 cites W1996057987 @default.
- W4223434316 cites W2008667922 @default.
- W4223434316 cites W2020502554 @default.
- W4223434316 cites W2066519132 @default.
- W4223434316 cites W2072072671 @default.
- W4223434316 cites W2093231248 @default.
- W4223434316 cites W2101394537 @default.
- W4223434316 cites W2143954917 @default.
- W4223434316 cites W2213612645 @default.
- W4223434316 cites W2239027908 @default.
- W4223434316 cites W2321278764 @default.
- W4223434316 cites W2396881363 @default.
- W4223434316 cites W2522264526 @default.
- W4223434316 cites W2603020828 @default.
- W4223434316 cites W2604452528 @default.
- W4223434316 cites W2619383789 @default.
- W4223434316 cites W2792903264 @default.
- W4223434316 cites W2793520628 @default.
- W4223434316 cites W2794106486 @default.
- W4223434316 cites W2805729772 @default.
- W4223434316 cites W2889779412 @default.
- W4223434316 cites W2898457169 @default.
- W4223434316 cites W2906577143 @default.
- W4223434316 cites W2910580108 @default.
- W4223434316 cites W2922486995 @default.
- W4223434316 cites W2952383525 @default.
- W4223434316 cites W2955961229 @default.
- W4223434316 cites W2965846681 @default.
- W4223434316 cites W2981648641 @default.
- W4223434316 cites W2996061341 @default.
- W4223434316 cites W2998223455 @default.
- W4223434316 cites W3003982772 @default.
- W4223434316 cites W3040176058 @default.
- W4223434316 cites W3041422176 @default.
- W4223434316 cites W3042891861 @default.
- W4223434316 cites W3043545482 @default.
- W4223434316 cites W3043942775 @default.
- W4223434316 cites W3045718109 @default.
- W4223434316 cites W3094595351 @default.
- W4223434316 cites W3095113198 @default.
- W4223434316 cites W3101824250 @default.
- W4223434316 cites W3154490392 @default.
- W4223434316 cites W3155652115 @default.
- W4223434316 cites W3171925877 @default.
- W4223434316 cites W3201437744 @default.
- W4223434316 doi "https://doi.org/10.1016/j.compbiomed.2022.105479" @default.
- W4223434316 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35398810" @default.
- W4223434316 hasPublicationYear "2022" @default.
- W4223434316 type Work @default.
- W4223434316 citedByCount "7" @default.
- W4223434316 countsByYear W42234343162022 @default.
- W4223434316 countsByYear W42234343162023 @default.
- W4223434316 crossrefType "journal-article" @default.
- W4223434316 hasAuthorship W4223434316A5002627616 @default.
- W4223434316 hasAuthorship W4223434316A5043901658 @default.
- W4223434316 hasAuthorship W4223434316A5087755485 @default.
- W4223434316 hasBestOaLocation W42234343161 @default.
- W4223434316 hasConcept C106131492 @default.
- W4223434316 hasConcept C116390426 @default.
- W4223434316 hasConcept C119857082 @default.
- W4223434316 hasConcept C12267149 @default.
- W4223434316 hasConcept C151730666 @default.
- W4223434316 hasConcept C153180895 @default.
- W4223434316 hasConcept C154945302 @default.
- W4223434316 hasConcept C196216189 @default.
- W4223434316 hasConcept C2779343474 @default.
- W4223434316 hasConcept C31972630 @default.
- W4223434316 hasConcept C41008148 @default.
- W4223434316 hasConcept C46286280 @default.
- W4223434316 hasConcept C47432892 @default.
- W4223434316 hasConcept C52622490 @default.
- W4223434316 hasConcept C86803240 @default.
- W4223434316 hasConcept C95722684 @default.
- W4223434316 hasConceptScore W4223434316C106131492 @default.
- W4223434316 hasConceptScore W4223434316C116390426 @default.
- W4223434316 hasConceptScore W4223434316C119857082 @default.
- W4223434316 hasConceptScore W4223434316C12267149 @default.
- W4223434316 hasConceptScore W4223434316C151730666 @default.
- W4223434316 hasConceptScore W4223434316C153180895 @default.
- W4223434316 hasConceptScore W4223434316C154945302 @default.
- W4223434316 hasConceptScore W4223434316C196216189 @default.
- W4223434316 hasConceptScore W4223434316C2779343474 @default.
- W4223434316 hasConceptScore W4223434316C31972630 @default.
- W4223434316 hasConceptScore W4223434316C41008148 @default.
- W4223434316 hasConceptScore W4223434316C46286280 @default.