Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223444875> ?p ?o ?g. }
- W4223444875 abstract "Abstract Background Four-dimensional cone-beam computed tomography (4D-CBCT) can visualize moving tumors, thus adaptive radiation therapy (ART) could be improved if 4D-CBCT were used. However, 4D-CBCT images suffer from severe imaging artifacts. The aim of this study is to investigate the use of synthetic 4D-CBCT (sCT) images created by a cycle generative adversarial network (CycleGAN) for ART for lung cancer. Methods Unpaired thoracic 4D-CBCT images and four-dimensional multislice computed tomography (4D-MSCT) images of 20 lung-cancer patients were used for training. High-quality sCT lung images generated by the CycleGAN model were tested on another 10 cases. The mean and mean absolute errors were calculated to assess changes in the computed tomography number. The structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) were used to compare the sCT and original 4D-CBCT images. Moreover, a volumetric modulation arc therapy plan with a dose of 48 Gy in four fractions was recalculated using the sCT images and compared with ideal dose distributions observed in 4D-MSCT images. Results The generated sCT images had fewer artifacts, and lung tumor regions were clearly observed in the sCT images. The mean and mean absolute errors were near 0 Hounsfield units in all organ regions. The SSIM and PSNR results were significantly improved in the sCT images by approximately 51% and 18%, respectively. Moreover, the results of gamma analysis were significantly improved; the pass rate reached over 90% in the doses recalculated using the sCT images. Moreover, each organ dose index of the sCT images agreed well with those of the 4D-MSCT images and were within approximately 5%. Conclusions The proposed CycleGAN enhances the quality of 4D-CBCT images, making them comparable to 4D-MSCT images. Thus, clinical implementation of sCT-based ART for lung cancer is feasible." @default.
- W4223444875 created "2022-04-14" @default.
- W4223444875 creator A5010513522 @default.
- W4223444875 creator A5020044987 @default.
- W4223444875 creator A5020979695 @default.
- W4223444875 creator A5050548917 @default.
- W4223444875 creator A5068847544 @default.
- W4223444875 creator A5076375061 @default.
- W4223444875 date "2022-04-07" @default.
- W4223444875 modified "2023-10-17" @default.
- W4223444875 title "A cycle generative adversarial network for improving the quality of four-dimensional cone-beam computed tomography images" @default.
- W4223444875 cites W2016295772 @default.
- W4223444875 cites W2049394478 @default.
- W4223444875 cites W2059746557 @default.
- W4223444875 cites W2083927153 @default.
- W4223444875 cites W2084720089 @default.
- W4223444875 cites W2130885411 @default.
- W4223444875 cites W2138443811 @default.
- W4223444875 cites W2145122414 @default.
- W4223444875 cites W2158167845 @default.
- W4223444875 cites W2166018620 @default.
- W4223444875 cites W2167150277 @default.
- W4223444875 cites W2170053503 @default.
- W4223444875 cites W2246298096 @default.
- W4223444875 cites W2737022104 @default.
- W4223444875 cites W2790431859 @default.
- W4223444875 cites W2898197178 @default.
- W4223444875 cites W2902028397 @default.
- W4223444875 cites W2946049212 @default.
- W4223444875 cites W2952935478 @default.
- W4223444875 cites W2962793481 @default.
- W4223444875 cites W2966935055 @default.
- W4223444875 cites W2991603147 @default.
- W4223444875 cites W2995534778 @default.
- W4223444875 cites W3038613716 @default.
- W4223444875 cites W3046003413 @default.
- W4223444875 cites W3103316509 @default.
- W4223444875 cites W3109755449 @default.
- W4223444875 cites W3139091093 @default.
- W4223444875 cites W3207251803 @default.
- W4223444875 cites W3208910722 @default.
- W4223444875 doi "https://doi.org/10.1186/s13014-022-02042-1" @default.
- W4223444875 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35392947" @default.
- W4223444875 hasPublicationYear "2022" @default.
- W4223444875 type Work @default.
- W4223444875 citedByCount "2" @default.
- W4223444875 countsByYear W42234448752023 @default.
- W4223444875 crossrefType "journal-article" @default.
- W4223444875 hasAuthorship W4223444875A5010513522 @default.
- W4223444875 hasAuthorship W4223444875A5020044987 @default.
- W4223444875 hasAuthorship W4223444875A5020979695 @default.
- W4223444875 hasAuthorship W4223444875A5050548917 @default.
- W4223444875 hasAuthorship W4223444875A5068847544 @default.
- W4223444875 hasAuthorship W4223444875A5076375061 @default.
- W4223444875 hasBestOaLocation W42234448751 @default.
- W4223444875 hasConcept C115961682 @default.
- W4223444875 hasConcept C126322002 @default.
- W4223444875 hasConcept C126838900 @default.
- W4223444875 hasConcept C154945302 @default.
- W4223444875 hasConcept C187954543 @default.
- W4223444875 hasConcept C2776256026 @default.
- W4223444875 hasConcept C2779813781 @default.
- W4223444875 hasConcept C2989005 @default.
- W4223444875 hasConcept C41008148 @default.
- W4223444875 hasConcept C509974204 @default.
- W4223444875 hasConcept C544519230 @default.
- W4223444875 hasConcept C55020928 @default.
- W4223444875 hasConcept C71924100 @default.
- W4223444875 hasConcept C9267231 @default.
- W4223444875 hasConceptScore W4223444875C115961682 @default.
- W4223444875 hasConceptScore W4223444875C126322002 @default.
- W4223444875 hasConceptScore W4223444875C126838900 @default.
- W4223444875 hasConceptScore W4223444875C154945302 @default.
- W4223444875 hasConceptScore W4223444875C187954543 @default.
- W4223444875 hasConceptScore W4223444875C2776256026 @default.
- W4223444875 hasConceptScore W4223444875C2779813781 @default.
- W4223444875 hasConceptScore W4223444875C2989005 @default.
- W4223444875 hasConceptScore W4223444875C41008148 @default.
- W4223444875 hasConceptScore W4223444875C509974204 @default.
- W4223444875 hasConceptScore W4223444875C544519230 @default.
- W4223444875 hasConceptScore W4223444875C55020928 @default.
- W4223444875 hasConceptScore W4223444875C71924100 @default.
- W4223444875 hasConceptScore W4223444875C9267231 @default.
- W4223444875 hasIssue "1" @default.
- W4223444875 hasLocation W42234448751 @default.
- W4223444875 hasLocation W42234448752 @default.
- W4223444875 hasLocation W42234448753 @default.
- W4223444875 hasOpenAccess W4223444875 @default.
- W4223444875 hasPrimaryLocation W42234448751 @default.
- W4223444875 hasRelatedWork W1642012722 @default.
- W4223444875 hasRelatedWork W1967263816 @default.
- W4223444875 hasRelatedWork W1982789351 @default.
- W4223444875 hasRelatedWork W2049394478 @default.
- W4223444875 hasRelatedWork W2095413131 @default.
- W4223444875 hasRelatedWork W2151127213 @default.
- W4223444875 hasRelatedWork W2152251929 @default.
- W4223444875 hasRelatedWork W2406812466 @default.
- W4223444875 hasRelatedWork W3184149220 @default.
- W4223444875 hasRelatedWork W3204237666 @default.
- W4223444875 hasVolume "17" @default.