Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223450006> ?p ?o ?g. }
- W4223450006 endingPage "244" @default.
- W4223450006 startingPage "230" @default.
- W4223450006 abstract "Vagal afferents regulate numerous physiological functions including arterial blood pressure, heart rate, breathing, and nociception. Cell bodies of vagal afferents reside in the inferior vagal (nodose) ganglia and their stimulation by various means is being considered as a way to regulate cardiorespiratory responses and control pain sensations. Stimulation of the nodose by exposure to infrared light is recently being considered as a precise way to elicit responses. These responses would likely involve the activity of temperature-sensitive membrane-bound channels. While papers have been published to track the expression of these transient receptor potential ion channels (TRPs), further studies are warranted to determine the in situ expression of the endogenous TRP proteins in the nodose ganglia to fully understand their pattern of expression, subcellular locations, and functions in this animal model. TRP ion channels are a superfamily of Na+ /Ca2+ -channels whose members are temperature- and/or mechano-sensitive and therefore represent a potential set of proteins that will be activated directly or indirectly by infrared light. Here, we report the spatial localization of six TRP channels, TRPV1, TRPV4, TRPM3, TRPM8, TRPA1, and TRPC1, from nodose ganglia taken from juvenile male Sprague-Dawley rats. The channels were detected using immunohistology with fluorescent tags on cryosections and imaged using confocal microscopy. All six TRP channels were detected with different levels of intensity in neuronal cell bodies and some were also detected in axonal fibers and blood vessels. The TRP receptors differed in their prevalence, in their patterns of expression, and in subcellular expression/localization. More specifically, TRPV1, TRPV4, TRPA1, TRPM8, TRPC1, and TRPM3 were found in vagal afferent cell bodies with a wide range of immunostaining intensity from neuron to neuron. Immunostaining for TRPV1, TRPV4, and TRPA1 appeared as fine particles scattered throughout the cytoplasm of the cell body. Intense TRPV1 immunostaining was also evident in a subset of axonal fibers. TRPM8 and TRPC1 were expressed in courser particles suggesting different subcellular compartments than for TRPV1. The localization of TRPM3 differed markedly from the other TRP channels with an immunostaining pattern that was localized to the periphery of a subset of cell bodies, whereas a scattering or no immunostaining was detected within the bulk of the cytoplasm. TRPV4 and TRPC1 were also expressed on the walls of blood vessels. The finding that all six TRP channels (representing four subfamilies) were present in the nodose ganglia provides the basis for studies designed to understand the roles of these channels in sensory transmission within vagal afferent fibers and in the responses elicited by exposure of nodose ganglia to infrared light and other stimuli. Depending on the location and functionality of the TRP channels, they may regulate the flux of Na+ /Ca2+ -across the membranes of cell bodies and axons of sensory afferents, efferent (motor) fibers coursing through the ganglia, and in vascular smooth muscle." @default.
- W4223450006 created "2022-04-14" @default.
- W4223450006 creator A5000929996 @default.
- W4223450006 creator A5023275344 @default.
- W4223450006 creator A5049049036 @default.
- W4223450006 creator A5052466361 @default.
- W4223450006 creator A5055749145 @default.
- W4223450006 creator A5067336969 @default.
- W4223450006 date "2022-04-09" @default.
- W4223450006 modified "2023-09-23" @default.
- W4223450006 title "Differential immunostaining patterns of transient receptor potential ( <scp>TRP</scp> ) ion channels in the rat nodose ganglion" @default.
- W4223450006 cites W1623761777 @default.
- W4223450006 cites W1968457075 @default.
- W4223450006 cites W1973526984 @default.
- W4223450006 cites W1978900863 @default.
- W4223450006 cites W1979345515 @default.
- W4223450006 cites W1979732590 @default.
- W4223450006 cites W1992381837 @default.
- W4223450006 cites W1996116448 @default.
- W4223450006 cites W2004780613 @default.
- W4223450006 cites W2011310302 @default.
- W4223450006 cites W2041312822 @default.
- W4223450006 cites W2046955207 @default.
- W4223450006 cites W2062290907 @default.
- W4223450006 cites W2064580105 @default.
- W4223450006 cites W2066189539 @default.
- W4223450006 cites W2079534325 @default.
- W4223450006 cites W2085127525 @default.
- W4223450006 cites W2087013505 @default.
- W4223450006 cites W2092472216 @default.
- W4223450006 cites W2095252530 @default.
- W4223450006 cites W2098512086 @default.
- W4223450006 cites W2107739482 @default.
- W4223450006 cites W2113897823 @default.
- W4223450006 cites W2116788840 @default.
- W4223450006 cites W2119355019 @default.
- W4223450006 cites W2124731391 @default.
- W4223450006 cites W2152585394 @default.
- W4223450006 cites W2169515226 @default.
- W4223450006 cites W2179612787 @default.
- W4223450006 cites W2212776737 @default.
- W4223450006 cites W2418994609 @default.
- W4223450006 cites W2623093916 @default.
- W4223450006 cites W2625949454 @default.
- W4223450006 cites W2734337694 @default.
- W4223450006 cites W2734378835 @default.
- W4223450006 cites W2793530112 @default.
- W4223450006 cites W2800335290 @default.
- W4223450006 cites W2847951859 @default.
- W4223450006 cites W2897365776 @default.
- W4223450006 cites W2910445818 @default.
- W4223450006 cites W2911881079 @default.
- W4223450006 cites W3029288363 @default.
- W4223450006 cites W3112396572 @default.
- W4223450006 cites W3146079278 @default.
- W4223450006 cites W4233595534 @default.
- W4223450006 cites W4240352843 @default.
- W4223450006 doi "https://doi.org/10.1111/joa.13656" @default.
- W4223450006 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35396708" @default.
- W4223450006 hasPublicationYear "2022" @default.
- W4223450006 type Work @default.
- W4223450006 citedByCount "3" @default.
- W4223450006 countsByYear W42234500062023 @default.
- W4223450006 crossrefType "journal-article" @default.
- W4223450006 hasAuthorship W4223450006A5000929996 @default.
- W4223450006 hasAuthorship W4223450006A5023275344 @default.
- W4223450006 hasAuthorship W4223450006A5049049036 @default.
- W4223450006 hasAuthorship W4223450006A5052466361 @default.
- W4223450006 hasAuthorship W4223450006A5055749145 @default.
- W4223450006 hasAuthorship W4223450006A5067336969 @default.
- W4223450006 hasBestOaLocation W42234500061 @default.
- W4223450006 hasConcept C126322002 @default.
- W4223450006 hasConcept C145314362 @default.
- W4223450006 hasConcept C15490471 @default.
- W4223450006 hasConcept C155164980 @default.
- W4223450006 hasConcept C160145004 @default.
- W4223450006 hasConcept C163146387 @default.
- W4223450006 hasConcept C169760540 @default.
- W4223450006 hasConcept C170493617 @default.
- W4223450006 hasConcept C185592680 @default.
- W4223450006 hasConcept C204232928 @default.
- W4223450006 hasConcept C24998067 @default.
- W4223450006 hasConcept C2781404750 @default.
- W4223450006 hasConcept C2909127448 @default.
- W4223450006 hasConcept C37088560 @default.
- W4223450006 hasConcept C4224716 @default.
- W4223450006 hasConcept C50254741 @default.
- W4223450006 hasConcept C71924100 @default.
- W4223450006 hasConcept C86803240 @default.
- W4223450006 hasConcept C90420996 @default.
- W4223450006 hasConcept C95444343 @default.
- W4223450006 hasConceptScore W4223450006C126322002 @default.
- W4223450006 hasConceptScore W4223450006C145314362 @default.
- W4223450006 hasConceptScore W4223450006C15490471 @default.
- W4223450006 hasConceptScore W4223450006C155164980 @default.
- W4223450006 hasConceptScore W4223450006C160145004 @default.
- W4223450006 hasConceptScore W4223450006C163146387 @default.
- W4223450006 hasConceptScore W4223450006C169760540 @default.