Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223452020> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4223452020 endingPage "e13" @default.
- W4223452020 startingPage "e13" @default.
- W4223452020 abstract "Background: Phenomenological description, diagnosis and assessment of disease development, as well as treatment effects, of movement disorders still heavily relies on clinical assessment using scoring scales. However, these scales are inherently prone to rater biases, thereby negatively affecting their reliability and comparability. Objective: To leverage recent advances in computer vision and artificial neural networks to devise a video-based movement analysis, which allows the quantitative measurement of cervical dystonia during clinical scoring of severity using the Toronto Western Spasmodic Torticollis Rating Scale (“TWSTRS-S”) before and after pallidal deep brain stimulation (DBS). Methods: 303 videos documenting the longitudinal TWSTRS-S assessment of 94 individuals who had undergone pallidal deep brain stimulation in the context of three multicentric studies, in addition to 22 standardized videos of healthy subjects (HS) were available for analysis. Clinical videos were retrospectively scored by two independent movement disorder specialists using the TWSTRS-S. HS videos and a subset of clinical videos were used for supervised training of a convolutional neural network for movement classification (MC-CNN) to segment 7 movement states along three axes (pitch, yaw, tilt) mapping to TWSTRS subscore dimensions (head inclination/reclination, turning, tilting). A total of 2178 frames from the video dataset were annotated to train a recurrent CNN for tracking of anatomical landmark points in the videos (R-CNN). Subsequently, coordinate time series were transformed into an anatomically inspired, multidimensional kinematic feature space (i. e. angles, velocities, ratios) to characterize MC-CNN classified movement states relevant to the TWSTRS-S. Results: MC-CNN reached ∼90% accuracy on a held-out test data set. The pose tracking R-CNN achieved train/ test errors of 0.5/ 9.5 mm, corresponding to 1.67/ 7.36 pixels (mean Euclidean distance). Movement classification analysis identified abnormal coherence between face-forward and the rotation and tilt (both left and right) movement states respectively, that are reminiscent of dystonic overflow phenomena and decreased range of motion which could be significantly attenuated by DBS (p<.005 for all comparisons). Furthermore, DBS reversed an abnormal degree of asymmetry in movement representations in 2/3 planes (pitch: p=.009, yaw: p= .011, roll: p= .828). Conclusions: We provide evidence that computer-assisted movement analysis using CNNs is a novel avenue to overcome metrological challenges in the field of movement disorders. CNNs may help derive and analyze patient and/or diagnosis-specific kinematic pathosignatures which can be integrated with multidimensional neural data and may contribute to “precision Neurology”." @default.
- W4223452020 created "2022-04-14" @default.
- W4223452020 creator A5026007088 @default.
- W4223452020 creator A5027419291 @default.
- W4223452020 creator A5034219333 @default.
- W4223452020 creator A5051032225 @default.
- W4223452020 creator A5061221445 @default.
- W4223452020 creator A5072289863 @default.
- W4223452020 date "2022-05-01" @default.
- W4223452020 modified "2023-09-27" @default.
- W4223452020 title "FV 23 POSe EstimatoR for Cervical Dystonia (POSER-CD): Automatized assessment of clinical severity and kinematic pathosignatures of Cervical Dystonia using convolutional neural networks" @default.
- W4223452020 doi "https://doi.org/10.1016/j.clinph.2022.01.029" @default.
- W4223452020 hasPublicationYear "2022" @default.
- W4223452020 type Work @default.
- W4223452020 citedByCount "2" @default.
- W4223452020 countsByYear W42234520202022 @default.
- W4223452020 crossrefType "journal-article" @default.
- W4223452020 hasAuthorship W4223452020A5026007088 @default.
- W4223452020 hasAuthorship W4223452020A5027419291 @default.
- W4223452020 hasAuthorship W4223452020A5034219333 @default.
- W4223452020 hasAuthorship W4223452020A5051032225 @default.
- W4223452020 hasAuthorship W4223452020A5061221445 @default.
- W4223452020 hasAuthorship W4223452020A5072289863 @default.
- W4223452020 hasConcept C118552586 @default.
- W4223452020 hasConcept C121332964 @default.
- W4223452020 hasConcept C154945302 @default.
- W4223452020 hasConcept C2777641544 @default.
- W4223452020 hasConcept C2778559928 @default.
- W4223452020 hasConcept C39920418 @default.
- W4223452020 hasConcept C41008148 @default.
- W4223452020 hasConcept C71924100 @default.
- W4223452020 hasConcept C74650414 @default.
- W4223452020 hasConcept C81363708 @default.
- W4223452020 hasConcept C99508421 @default.
- W4223452020 hasConceptScore W4223452020C118552586 @default.
- W4223452020 hasConceptScore W4223452020C121332964 @default.
- W4223452020 hasConceptScore W4223452020C154945302 @default.
- W4223452020 hasConceptScore W4223452020C2777641544 @default.
- W4223452020 hasConceptScore W4223452020C2778559928 @default.
- W4223452020 hasConceptScore W4223452020C39920418 @default.
- W4223452020 hasConceptScore W4223452020C41008148 @default.
- W4223452020 hasConceptScore W4223452020C71924100 @default.
- W4223452020 hasConceptScore W4223452020C74650414 @default.
- W4223452020 hasConceptScore W4223452020C81363708 @default.
- W4223452020 hasConceptScore W4223452020C99508421 @default.
- W4223452020 hasLocation W42234520201 @default.
- W4223452020 hasOpenAccess W4223452020 @default.
- W4223452020 hasPrimaryLocation W42234520201 @default.
- W4223452020 hasRelatedWork W2013178388 @default.
- W4223452020 hasRelatedWork W2047692428 @default.
- W4223452020 hasRelatedWork W2077464323 @default.
- W4223452020 hasRelatedWork W2604975150 @default.
- W4223452020 hasRelatedWork W2744848266 @default.
- W4223452020 hasRelatedWork W2801781484 @default.
- W4223452020 hasRelatedWork W3034182271 @default.
- W4223452020 hasRelatedWork W3194899198 @default.
- W4223452020 hasRelatedWork W3205642904 @default.
- W4223452020 hasRelatedWork W991664524 @default.
- W4223452020 hasVolume "137" @default.
- W4223452020 isParatext "false" @default.
- W4223452020 isRetracted "false" @default.
- W4223452020 workType "article" @default.