Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223453606> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4223453606 endingPage "592" @default.
- W4223453606 startingPage "580" @default.
- W4223453606 abstract "Abstract While MRI is the modality of choice for the diagnosis of longitudinal tears (LTs) of the deep digital flexor tendon (DDFT) of horses, differentiating between various grades of tears based on imaging characteristics is challenging due to overlapping imaging features. In this retrospective, exploratory, diagnostic accuracy study, a machine learning (ML) scheme was applied to link quantitative features and qualitative descriptors to leverage MRI characteristics of different grades of tearing of the DDFT of horses. A qualitative MRI characteristic scheme, combining tendon morphologic features, altered signal intensity, and synovial sheath distention, was used for LT classification with an excellent diagnostic accuracy of the high‐grade tears but more limited accuracy for the detection of low‐grade tears. A quantitative ML approach was followed to measure the contribution of 30 quantitative phenotypic features for characterizing and classifying tendinous tears. Among the 30 imaging features, boundary curvature represented by the standard deviation and maximum had the most significant discriminatory power ( P < 0.05) between normal and abnormal tendons and could be used as an aid for classifying the different grades of LTs of DDFTs. Imaging analysis‐based 3D interactive surface plot supports qualitative characterization of different grades of LTs of the DDFT through clearer visualization of the tendon in three dimensions and simple integration of two perspectives features (i.e., margin/distribution and intensity/distribution). A systematic approach combining quantitative features with qualitative analyses using ML was diagnostically beneficial in MRI characterization and in discriminating between different grades of LTs of the DDFT of horses." @default.
- W4223453606 created "2022-04-14" @default.
- W4223453606 creator A5051015484 @default.
- W4223453606 creator A5055619581 @default.
- W4223453606 creator A5059987549 @default.
- W4223453606 creator A5076012004 @default.
- W4223453606 creator A5085022285 @default.
- W4223453606 date "2022-04-12" @default.
- W4223453606 modified "2023-10-01" @default.
- W4223453606 title "Leveraging MRI characterization of longitudinal tears of the deep digital flexor tendon in horses using machine learning" @default.
- W4223453606 cites W1841472604 @default.
- W4223453606 cites W1844141550 @default.
- W4223453606 cites W1851875273 @default.
- W4223453606 cites W1893045543 @default.
- W4223453606 cites W1961256579 @default.
- W4223453606 cites W1986409703 @default.
- W4223453606 cites W1998083672 @default.
- W4223453606 cites W2006936699 @default.
- W4223453606 cites W2016780041 @default.
- W4223453606 cites W2026817838 @default.
- W4223453606 cites W2029528202 @default.
- W4223453606 cites W2031477083 @default.
- W4223453606 cites W2074207718 @default.
- W4223453606 cites W2079495034 @default.
- W4223453606 cites W2116468691 @default.
- W4223453606 cites W2147947739 @default.
- W4223453606 cites W2159098208 @default.
- W4223453606 cites W2167516797 @default.
- W4223453606 cites W2169528473 @default.
- W4223453606 cites W2176660874 @default.
- W4223453606 cites W2237062899 @default.
- W4223453606 cites W2404866316 @default.
- W4223453606 cites W2533800772 @default.
- W4223453606 cites W2762559025 @default.
- W4223453606 cites W2803760365 @default.
- W4223453606 cites W2916394428 @default.
- W4223453606 cites W2920972911 @default.
- W4223453606 cites W2969307755 @default.
- W4223453606 cites W3005131632 @default.
- W4223453606 cites W3140411239 @default.
- W4223453606 cites W4233174072 @default.
- W4223453606 cites W4250664506 @default.
- W4223453606 doi "https://doi.org/10.1111/vru.13090" @default.
- W4223453606 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35415959" @default.
- W4223453606 hasPublicationYear "2022" @default.
- W4223453606 type Work @default.
- W4223453606 citedByCount "2" @default.
- W4223453606 countsByYear W42234536062023 @default.
- W4223453606 crossrefType "journal-article" @default.
- W4223453606 hasAuthorship W4223453606A5051015484 @default.
- W4223453606 hasAuthorship W4223453606A5055619581 @default.
- W4223453606 hasAuthorship W4223453606A5059987549 @default.
- W4223453606 hasAuthorship W4223453606A5076012004 @default.
- W4223453606 hasAuthorship W4223453606A5085022285 @default.
- W4223453606 hasConcept C126838900 @default.
- W4223453606 hasConcept C141071460 @default.
- W4223453606 hasConcept C142724271 @default.
- W4223453606 hasConcept C154945302 @default.
- W4223453606 hasConcept C2778275304 @default.
- W4223453606 hasConcept C2780105995 @default.
- W4223453606 hasConcept C41008148 @default.
- W4223453606 hasConcept C71924100 @default.
- W4223453606 hasConceptScore W4223453606C126838900 @default.
- W4223453606 hasConceptScore W4223453606C141071460 @default.
- W4223453606 hasConceptScore W4223453606C142724271 @default.
- W4223453606 hasConceptScore W4223453606C154945302 @default.
- W4223453606 hasConceptScore W4223453606C2778275304 @default.
- W4223453606 hasConceptScore W4223453606C2780105995 @default.
- W4223453606 hasConceptScore W4223453606C41008148 @default.
- W4223453606 hasConceptScore W4223453606C71924100 @default.
- W4223453606 hasIssue "5" @default.
- W4223453606 hasLocation W42234536061 @default.
- W4223453606 hasLocation W42234536062 @default.
- W4223453606 hasOpenAccess W4223453606 @default.
- W4223453606 hasPrimaryLocation W42234536061 @default.
- W4223453606 hasRelatedWork W1983371565 @default.
- W4223453606 hasRelatedWork W2003736806 @default.
- W4223453606 hasRelatedWork W2032642662 @default.
- W4223453606 hasRelatedWork W2049214470 @default.
- W4223453606 hasRelatedWork W2105472258 @default.
- W4223453606 hasRelatedWork W2147160167 @default.
- W4223453606 hasRelatedWork W2162707291 @default.
- W4223453606 hasRelatedWork W2807311925 @default.
- W4223453606 hasRelatedWork W2895700327 @default.
- W4223453606 hasRelatedWork W2918126762 @default.
- W4223453606 hasVolume "63" @default.
- W4223453606 isParatext "false" @default.
- W4223453606 isRetracted "false" @default.
- W4223453606 workType "article" @default.