Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223458449> ?p ?o ?g. }
- W4223458449 endingPage "119257" @default.
- W4223458449 startingPage "119257" @default.
- W4223458449 abstract "Microplastics are widely found in the marine environment. Recent studies have shown that pathogenic microorganisms can hitchhike on microplastics, which might act as a vector for the spread of pathogens. Vibrio spp. are known to be pathogenic to humans and can cause serious foodborne diseases. In this study, using datasets from an estuary and a mariculture zone in China, five machine learning models were established to predict the relative abundance of Vibrio spp. on microplastics. The results showed that deep neural network (DNN) model and RandomForest algorithm achieved the best predictive performance. Different data sources, data sampling, and processing methods had a little impact on the prediction performance of DNN and RandomForest models. SHapley Additive exPlanations (SHAP) indicated that salinity and temperature are the primary factors affecting the relative abundance of Vibrio spp. The prediction performances of the five machine learning models were further improved by feature selection, providing information to support future experimental research. The results of this study could help establish a long-term and dynamic monitoring system for the relative abundance of Vibrio spp. on microplastics in response to environmental factors as well as provide useful information for assessing the potential health impacts of microplastics on marine ecology and humans." @default.
- W4223458449 created "2022-04-15" @default.
- W4223458449 creator A5010358245 @default.
- W4223458449 creator A5012506279 @default.
- W4223458449 creator A5016073534 @default.
- W4223458449 creator A5023830542 @default.
- W4223458449 creator A5027420814 @default.
- W4223458449 creator A5042100070 @default.
- W4223458449 creator A5055929948 @default.
- W4223458449 creator A5060348530 @default.
- W4223458449 creator A5060965748 @default.
- W4223458449 creator A5069640391 @default.
- W4223458449 date "2022-07-01" @default.
- W4223458449 modified "2023-10-16" @default.
- W4223458449 title "Machine learning to predict dynamic changes of pathogenic Vibrio spp. abundance on microplastics in marine environment" @default.
- W4223458449 cites W1512454617 @default.
- W4223458449 cites W1683537166 @default.
- W4223458449 cites W1843649249 @default.
- W4223458449 cites W1970780831 @default.
- W4223458449 cites W1985064663 @default.
- W4223458449 cites W1999713000 @default.
- W4223458449 cites W2002533263 @default.
- W4223458449 cites W2007981718 @default.
- W4223458449 cites W2029092200 @default.
- W4223458449 cites W2038352862 @default.
- W4223458449 cites W2038774192 @default.
- W4223458449 cites W2042679402 @default.
- W4223458449 cites W2051121620 @default.
- W4223458449 cites W2055205604 @default.
- W4223458449 cites W2055522016 @default.
- W4223458449 cites W2060897523 @default.
- W4223458449 cites W2062848325 @default.
- W4223458449 cites W2064112983 @default.
- W4223458449 cites W2065698093 @default.
- W4223458449 cites W2075005352 @default.
- W4223458449 cites W2084435057 @default.
- W4223458449 cites W2090490120 @default.
- W4223458449 cites W2093637066 @default.
- W4223458449 cites W2122825543 @default.
- W4223458449 cites W2140048037 @default.
- W4223458449 cites W2149646743 @default.
- W4223458449 cites W2158143121 @default.
- W4223458449 cites W2159793693 @default.
- W4223458449 cites W2161194528 @default.
- W4223458449 cites W2300403628 @default.
- W4223458449 cites W2332054710 @default.
- W4223458449 cites W2343278965 @default.
- W4223458449 cites W2470845313 @default.
- W4223458449 cites W2748086219 @default.
- W4223458449 cites W2752832123 @default.
- W4223458449 cites W2773252203 @default.
- W4223458449 cites W2779212101 @default.
- W4223458449 cites W2793807243 @default.
- W4223458449 cites W2794249619 @default.
- W4223458449 cites W2809484111 @default.
- W4223458449 cites W2883925299 @default.
- W4223458449 cites W2910705748 @default.
- W4223458449 cites W2911964244 @default.
- W4223458449 cites W2919358988 @default.
- W4223458449 cites W2921024146 @default.
- W4223458449 cites W2925957167 @default.
- W4223458449 cites W2931270890 @default.
- W4223458449 cites W2944998995 @default.
- W4223458449 cites W2955565501 @default.
- W4223458449 cites W2955922979 @default.
- W4223458449 cites W2969477928 @default.
- W4223458449 cites W2970348747 @default.
- W4223458449 cites W2981792167 @default.
- W4223458449 cites W2983444815 @default.
- W4223458449 cites W2984806120 @default.
- W4223458449 cites W2990850959 @default.
- W4223458449 cites W2999615587 @default.
- W4223458449 cites W3007945801 @default.
- W4223458449 cites W3009706545 @default.
- W4223458449 cites W3030218091 @default.
- W4223458449 cites W3033291120 @default.
- W4223458449 cites W3038722116 @default.
- W4223458449 cites W3087916718 @default.
- W4223458449 cites W3108080245 @default.
- W4223458449 cites W3110911168 @default.
- W4223458449 cites W3114994086 @default.
- W4223458449 cites W3119763178 @default.
- W4223458449 cites W3127409731 @default.
- W4223458449 cites W3127699880 @default.
- W4223458449 cites W3136083394 @default.
- W4223458449 cites W3187043755 @default.
- W4223458449 cites W992771184 @default.
- W4223458449 doi "https://doi.org/10.1016/j.envpol.2022.119257" @default.
- W4223458449 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35398156" @default.
- W4223458449 hasPublicationYear "2022" @default.
- W4223458449 type Work @default.
- W4223458449 citedByCount "9" @default.
- W4223458449 countsByYear W42234584492022 @default.
- W4223458449 countsByYear W42234584492023 @default.
- W4223458449 crossrefType "journal-article" @default.
- W4223458449 hasAuthorship W4223458449A5010358245 @default.
- W4223458449 hasAuthorship W4223458449A5012506279 @default.
- W4223458449 hasAuthorship W4223458449A5016073534 @default.