Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223467452> ?p ?o ?g. }
- W4223467452 endingPage "9" @default.
- W4223467452 startingPage "1" @default.
- W4223467452 abstract "A good contrast is significant for analysis of medical images, and if the images have poor contrast, then some methods of contrast enhancement can be of much benefit. In this paper, a convolution neural network-based transfer learning approach is utilized for contrast enhancement of mammographic images. The experiments are conducted on ISP and MIAS datasets, where ISP dataset is used for training and MIAS dataset is used for testing (contrast enhancement). Experimental comparison of the proposed technique is done with the most popular direct and indirect contrast enhancement techniques such as CLAHE, BBHE, RMSHE, and contrast stretching. A qualitative comparison is done using mean square error (MSE), signal to noise ratio (SNR), and peak signal to noise ratio (PSNR). It is observed that the proposed technique outperforms the other techniques HE, RMSHE, CLAHE, BBHE, and contrast stretching." @default.
- W4223467452 created "2022-04-15" @default.
- W4223467452 creator A5008542519 @default.
- W4223467452 creator A5020636357 @default.
- W4223467452 creator A5054502285 @default.
- W4223467452 creator A5055907404 @default.
- W4223467452 creator A5056649402 @default.
- W4223467452 creator A5070313706 @default.
- W4223467452 creator A5074179418 @default.
- W4223467452 creator A5074367788 @default.
- W4223467452 date "2022-04-11" @default.
- W4223467452 modified "2023-10-02" @default.
- W4223467452 title "Contrast Enhancement in Mammograms Using Convolution Neural Networks for Edge Computing Systems" @default.
- W4223467452 cites W1967605353 @default.
- W4223467452 cites W1979211026 @default.
- W4223467452 cites W1986086122 @default.
- W4223467452 cites W1993150044 @default.
- W4223467452 cites W2015589393 @default.
- W4223467452 cites W2098994529 @default.
- W4223467452 cites W2099378294 @default.
- W4223467452 cites W2112889919 @default.
- W4223467452 cites W2114531724 @default.
- W4223467452 cites W2116973876 @default.
- W4223467452 cites W2121900453 @default.
- W4223467452 cites W2137618748 @default.
- W4223467452 cites W2144045556 @default.
- W4223467452 cites W2150721269 @default.
- W4223467452 cites W2244569634 @default.
- W4223467452 cites W2254039850 @default.
- W4223467452 cites W2566376500 @default.
- W4223467452 cites W2569759000 @default.
- W4223467452 cites W2782925919 @default.
- W4223467452 cites W2783399029 @default.
- W4223467452 cites W2791071401 @default.
- W4223467452 cites W2792426547 @default.
- W4223467452 cites W2810604672 @default.
- W4223467452 cites W2945001722 @default.
- W4223467452 cites W3097595678 @default.
- W4223467452 cites W3113695388 @default.
- W4223467452 cites W3119456559 @default.
- W4223467452 cites W3120218437 @default.
- W4223467452 cites W3133693093 @default.
- W4223467452 cites W3134164430 @default.
- W4223467452 cites W3206194729 @default.
- W4223467452 cites W4210922884 @default.
- W4223467452 doi "https://doi.org/10.1155/2022/1882464" @default.
- W4223467452 hasPublicationYear "2022" @default.
- W4223467452 type Work @default.
- W4223467452 citedByCount "2" @default.
- W4223467452 countsByYear W42234674522023 @default.
- W4223467452 crossrefType "journal-article" @default.
- W4223467452 hasAuthorship W4223467452A5008542519 @default.
- W4223467452 hasAuthorship W4223467452A5020636357 @default.
- W4223467452 hasAuthorship W4223467452A5054502285 @default.
- W4223467452 hasAuthorship W4223467452A5055907404 @default.
- W4223467452 hasAuthorship W4223467452A5056649402 @default.
- W4223467452 hasAuthorship W4223467452A5070313706 @default.
- W4223467452 hasAuthorship W4223467452A5074179418 @default.
- W4223467452 hasAuthorship W4223467452A5074367788 @default.
- W4223467452 hasBestOaLocation W42234674521 @default.
- W4223467452 hasConcept C115961682 @default.
- W4223467452 hasConcept C126838900 @default.
- W4223467452 hasConcept C136943445 @default.
- W4223467452 hasConcept C13944312 @default.
- W4223467452 hasConcept C143409427 @default.
- W4223467452 hasConcept C153180895 @default.
- W4223467452 hasConcept C154579607 @default.
- W4223467452 hasConcept C154945302 @default.
- W4223467452 hasConcept C2776502983 @default.
- W4223467452 hasConcept C3018181011 @default.
- W4223467452 hasConcept C30387639 @default.
- W4223467452 hasConcept C41008148 @default.
- W4223467452 hasConcept C45347329 @default.
- W4223467452 hasConcept C50644808 @default.
- W4223467452 hasConcept C71924100 @default.
- W4223467452 hasConcept C76155785 @default.
- W4223467452 hasConcept C81363708 @default.
- W4223467452 hasConcept C9417928 @default.
- W4223467452 hasConcept C99498987 @default.
- W4223467452 hasConceptScore W4223467452C115961682 @default.
- W4223467452 hasConceptScore W4223467452C126838900 @default.
- W4223467452 hasConceptScore W4223467452C136943445 @default.
- W4223467452 hasConceptScore W4223467452C13944312 @default.
- W4223467452 hasConceptScore W4223467452C143409427 @default.
- W4223467452 hasConceptScore W4223467452C153180895 @default.
- W4223467452 hasConceptScore W4223467452C154579607 @default.
- W4223467452 hasConceptScore W4223467452C154945302 @default.
- W4223467452 hasConceptScore W4223467452C2776502983 @default.
- W4223467452 hasConceptScore W4223467452C3018181011 @default.
- W4223467452 hasConceptScore W4223467452C30387639 @default.
- W4223467452 hasConceptScore W4223467452C41008148 @default.
- W4223467452 hasConceptScore W4223467452C45347329 @default.
- W4223467452 hasConceptScore W4223467452C50644808 @default.
- W4223467452 hasConceptScore W4223467452C71924100 @default.
- W4223467452 hasConceptScore W4223467452C76155785 @default.
- W4223467452 hasConceptScore W4223467452C81363708 @default.
- W4223467452 hasConceptScore W4223467452C9417928 @default.
- W4223467452 hasConceptScore W4223467452C99498987 @default.