Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223478633> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4223478633 endingPage "131724" @default.
- W4223478633 startingPage "131724" @default.
- W4223478633 abstract "Quickly and accurately grasping the water quality in the drainage network is essential for the management and early warning of the urban water environment. Modeling-based detection methods enable fast and reagent-free water quality detection based on inexpensive multi-source data, which is cleaner and more sustainable than traditional chemical-reaction-based detection methods. But the unsatisfactory accuracy limits their practical application. This study proposes an integrated EMD-LSTM model that combines the data preprocessing module centered on empirical mode decomposition (EMD) and the long short-term memory (LSTM) neural network prediction module to improve the accuracy of the modeling-based detection methods. In the integrated EMD-LSTM model, EMD allows retaining outliers and utilizing data on non-aligned moments, which contributes to capturing data patterns, while powerful nonlinear mapping and learning ability of LSTM neural network enables the time series prediction of water quality. As a result, the EMD-LSTM has achieved the highest R2 values (0.961, 0.9384, 0.9575, 0.9441, 0.9502) and the lowest RMSE values (8.3112, 6.7795, 0.2691, 2.6239, 1.4894) in the prediction of COD, BOD5, TP, TN, NH3–N when compared with the integrated models formed by combining other preprocessing procedures (i.e., traditional operation, short-time Fourier transform) and data-driven forecasting algorithms (i.e., partial least squares regression, gradient boosting regression, deep neural network). This study provides enlightenment for improving the accuracy of modeling-based detection methods, which has driven the development of water quality detection technology towards cleaner and more sustainable." @default.
- W4223478633 created "2022-04-15" @default.
- W4223478633 creator A5009164476 @default.
- W4223478633 creator A5032533121 @default.
- W4223478633 creator A5040862370 @default.
- W4223478633 creator A5044347472 @default.
- W4223478633 creator A5046340513 @default.
- W4223478633 creator A5046942454 @default.
- W4223478633 creator A5061906127 @default.
- W4223478633 date "2022-06-01" @default.
- W4223478633 modified "2023-10-16" @default.
- W4223478633 title "Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model" @default.
- W4223478633 cites W1968302964 @default.
- W4223478633 cites W2007221293 @default.
- W4223478633 cites W2035381272 @default.
- W4223478633 cites W2064675550 @default.
- W4223478633 cites W2165700458 @default.
- W4223478633 cites W2507780144 @default.
- W4223478633 cites W2555378055 @default.
- W4223478633 cites W2581163311 @default.
- W4223478633 cites W2592313419 @default.
- W4223478633 cites W2793539731 @default.
- W4223478633 cites W2795607267 @default.
- W4223478633 cites W2800819102 @default.
- W4223478633 cites W2889552320 @default.
- W4223478633 cites W2908805909 @default.
- W4223478633 cites W2946890823 @default.
- W4223478633 cites W2981834981 @default.
- W4223478633 cites W2994440657 @default.
- W4223478633 cites W2998681661 @default.
- W4223478633 cites W3005657599 @default.
- W4223478633 cites W3008325040 @default.
- W4223478633 cites W3039109528 @default.
- W4223478633 cites W3044282480 @default.
- W4223478633 cites W3090158923 @default.
- W4223478633 cites W3093713432 @default.
- W4223478633 cites W3105469237 @default.
- W4223478633 cites W3128444610 @default.
- W4223478633 cites W3149935611 @default.
- W4223478633 cites W3154607708 @default.
- W4223478633 cites W3189332573 @default.
- W4223478633 cites W3196897376 @default.
- W4223478633 cites W3198589258 @default.
- W4223478633 cites W3209750664 @default.
- W4223478633 cites W3214659680 @default.
- W4223478633 cites W4210276887 @default.
- W4223478633 doi "https://doi.org/10.1016/j.jclepro.2022.131724" @default.
- W4223478633 hasPublicationYear "2022" @default.
- W4223478633 type Work @default.
- W4223478633 citedByCount "42" @default.
- W4223478633 countsByYear W42234786332022 @default.
- W4223478633 countsByYear W42234786332023 @default.
- W4223478633 crossrefType "journal-article" @default.
- W4223478633 hasAuthorship W4223478633A5009164476 @default.
- W4223478633 hasAuthorship W4223478633A5032533121 @default.
- W4223478633 hasAuthorship W4223478633A5040862370 @default.
- W4223478633 hasAuthorship W4223478633A5044347472 @default.
- W4223478633 hasAuthorship W4223478633A5046340513 @default.
- W4223478633 hasAuthorship W4223478633A5046942454 @default.
- W4223478633 hasAuthorship W4223478633A5061906127 @default.
- W4223478633 hasConcept C10551718 @default.
- W4223478633 hasConcept C106131492 @default.
- W4223478633 hasConcept C119857082 @default.
- W4223478633 hasConcept C124101348 @default.
- W4223478633 hasConcept C154945302 @default.
- W4223478633 hasConcept C25570617 @default.
- W4223478633 hasConcept C31972630 @default.
- W4223478633 hasConcept C41008148 @default.
- W4223478633 hasConcept C46686674 @default.
- W4223478633 hasConcept C50644808 @default.
- W4223478633 hasConceptScore W4223478633C10551718 @default.
- W4223478633 hasConceptScore W4223478633C106131492 @default.
- W4223478633 hasConceptScore W4223478633C119857082 @default.
- W4223478633 hasConceptScore W4223478633C124101348 @default.
- W4223478633 hasConceptScore W4223478633C154945302 @default.
- W4223478633 hasConceptScore W4223478633C25570617 @default.
- W4223478633 hasConceptScore W4223478633C31972630 @default.
- W4223478633 hasConceptScore W4223478633C41008148 @default.
- W4223478633 hasConceptScore W4223478633C46686674 @default.
- W4223478633 hasConceptScore W4223478633C50644808 @default.
- W4223478633 hasLocation W42234786331 @default.
- W4223478633 hasOpenAccess W4223478633 @default.
- W4223478633 hasPrimaryLocation W42234786331 @default.
- W4223478633 hasRelatedWork W2011248322 @default.
- W4223478633 hasRelatedWork W2076661204 @default.
- W4223478633 hasRelatedWork W2081563414 @default.
- W4223478633 hasRelatedWork W2359718298 @default.
- W4223478633 hasRelatedWork W2363056446 @default.
- W4223478633 hasRelatedWork W2377062149 @default.
- W4223478633 hasRelatedWork W2380939102 @default.
- W4223478633 hasRelatedWork W3014107421 @default.
- W4223478633 hasRelatedWork W3082059448 @default.
- W4223478633 hasRelatedWork W4313640622 @default.
- W4223478633 hasVolume "354" @default.
- W4223478633 isParatext "false" @default.
- W4223478633 isRetracted "false" @default.
- W4223478633 workType "article" @default.