Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223484331> ?p ?o ?g. }
- W4223484331 endingPage "2704" @default.
- W4223484331 startingPage "2704" @default.
- W4223484331 abstract "One of the essential requirements of injection molding is to ensure the stable quality of the parts produced. However, numerous processing conditions, which are often interrelated in quite a complex way, make this challenging. Machine learning (ML) algorithms can be the solution, as they work in multidimensional spaces by learning the structure of datasets. In this study, we used four ML algorithms (kNN, naïve Bayes, linear discriminant analysis, and decision tree) and compared their effectiveness in predicting the quality of multi-cavity injection molding. We used pressure-based quality indexes (features) as inputs for the classification algorithms. We proved that all the examined ML algorithms adequately predict quality in injection molding even with very little training data. We found that the decision tree algorithm was the most accurate one, with a computational time of only 8-10 s. The average performance of the decision tree algorithm exceeded 90%, even for very little training data. We also demonstrated that feature selection does not significantly affect the accuracy of the decision tree algorithm." @default.
- W4223484331 created "2022-04-15" @default.
- W4223484331 creator A5008149692 @default.
- W4223484331 creator A5015845132 @default.
- W4223484331 creator A5039904905 @default.
- W4223484331 creator A5066331339 @default.
- W4223484331 date "2022-04-01" @default.
- W4223484331 modified "2023-10-16" @default.
- W4223484331 title "Machine Learning in Injection Molding: An Industry 4.0 Method of Quality Prediction" @default.
- W4223484331 cites W1976354615 @default.
- W4223484331 cites W1978679570 @default.
- W4223484331 cites W1986021722 @default.
- W4223484331 cites W1986868703 @default.
- W4223484331 cites W1987331870 @default.
- W4223484331 cites W2059582437 @default.
- W4223484331 cites W2077930846 @default.
- W4223484331 cites W2081892016 @default.
- W4223484331 cites W2136487516 @default.
- W4223484331 cites W2138263042 @default.
- W4223484331 cites W2148126923 @default.
- W4223484331 cites W2587134539 @default.
- W4223484331 cites W2668806670 @default.
- W4223484331 cites W2737940375 @default.
- W4223484331 cites W2789794530 @default.
- W4223484331 cites W2964373604 @default.
- W4223484331 cites W2968672609 @default.
- W4223484331 cites W2976847457 @default.
- W4223484331 cites W2979789884 @default.
- W4223484331 cites W2979795810 @default.
- W4223484331 cites W2984632510 @default.
- W4223484331 cites W3011156038 @default.
- W4223484331 cites W3013545232 @default.
- W4223484331 cites W3048462146 @default.
- W4223484331 cites W3104861995 @default.
- W4223484331 cites W3122787295 @default.
- W4223484331 cites W3133743901 @default.
- W4223484331 cites W3162674368 @default.
- W4223484331 cites W3195935376 @default.
- W4223484331 cites W3202272995 @default.
- W4223484331 cites W4206285113 @default.
- W4223484331 cites W4238284510 @default.
- W4223484331 cites W923678087 @default.
- W4223484331 doi "https://doi.org/10.3390/s22072704" @default.
- W4223484331 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35408318" @default.
- W4223484331 hasPublicationYear "2022" @default.
- W4223484331 type Work @default.
- W4223484331 citedByCount "13" @default.
- W4223484331 countsByYear W42234843312022 @default.
- W4223484331 countsByYear W42234843312023 @default.
- W4223484331 crossrefType "journal-article" @default.
- W4223484331 hasAuthorship W4223484331A5008149692 @default.
- W4223484331 hasAuthorship W4223484331A5015845132 @default.
- W4223484331 hasAuthorship W4223484331A5039904905 @default.
- W4223484331 hasAuthorship W4223484331A5066331339 @default.
- W4223484331 hasBestOaLocation W42234843311 @default.
- W4223484331 hasConcept C111472728 @default.
- W4223484331 hasConcept C113174947 @default.
- W4223484331 hasConcept C11413529 @default.
- W4223484331 hasConcept C119857082 @default.
- W4223484331 hasConcept C12267149 @default.
- W4223484331 hasConcept C124101348 @default.
- W4223484331 hasConcept C127413603 @default.
- W4223484331 hasConcept C134306372 @default.
- W4223484331 hasConcept C138885662 @default.
- W4223484331 hasConcept C148483581 @default.
- W4223484331 hasConcept C154945302 @default.
- W4223484331 hasConcept C2776401178 @default.
- W4223484331 hasConcept C2779530757 @default.
- W4223484331 hasConcept C33923547 @default.
- W4223484331 hasConcept C41008148 @default.
- W4223484331 hasConcept C41895202 @default.
- W4223484331 hasConcept C52001869 @default.
- W4223484331 hasConcept C5481197 @default.
- W4223484331 hasConcept C67558686 @default.
- W4223484331 hasConcept C69738355 @default.
- W4223484331 hasConcept C78519656 @default.
- W4223484331 hasConcept C84525736 @default.
- W4223484331 hasConceptScore W4223484331C111472728 @default.
- W4223484331 hasConceptScore W4223484331C113174947 @default.
- W4223484331 hasConceptScore W4223484331C11413529 @default.
- W4223484331 hasConceptScore W4223484331C119857082 @default.
- W4223484331 hasConceptScore W4223484331C12267149 @default.
- W4223484331 hasConceptScore W4223484331C124101348 @default.
- W4223484331 hasConceptScore W4223484331C127413603 @default.
- W4223484331 hasConceptScore W4223484331C134306372 @default.
- W4223484331 hasConceptScore W4223484331C138885662 @default.
- W4223484331 hasConceptScore W4223484331C148483581 @default.
- W4223484331 hasConceptScore W4223484331C154945302 @default.
- W4223484331 hasConceptScore W4223484331C2776401178 @default.
- W4223484331 hasConceptScore W4223484331C2779530757 @default.
- W4223484331 hasConceptScore W4223484331C33923547 @default.
- W4223484331 hasConceptScore W4223484331C41008148 @default.
- W4223484331 hasConceptScore W4223484331C41895202 @default.
- W4223484331 hasConceptScore W4223484331C52001869 @default.
- W4223484331 hasConceptScore W4223484331C5481197 @default.
- W4223484331 hasConceptScore W4223484331C67558686 @default.
- W4223484331 hasConceptScore W4223484331C69738355 @default.
- W4223484331 hasConceptScore W4223484331C78519656 @default.