Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223485172> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4223485172 endingPage "107975" @default.
- W4223485172 startingPage "107975" @default.
- W4223485172 abstract "Non-technical losses (NTLs) are one of the major causes of revenue losses for electric utilities. In the literature, various machine learning (ML)/deep learning (DL) approaches are employed to detect NTLs. The existing studies are mostly concerned with tuning the hyperparameters of ML/DL methods for efficient detection of NTL, i.e., electricity theft detection. Some of them focus on the selection of prominent features from data to improve the performance of electricity theft detection. However, the curse of dimensionality affects the generalization ability of ML/DL classifiers and leads to computational, storage, and overfitting problems. Therefore, to deal with the above-mentioned issues, this study proposes a system based on metaheuristic techniques (artificial bee colony and genetic algorithm) and denoising autoencoder for electricity theft detection using big data in electric power systems. The former (metaheuristics) are used to select prominent features, while the latter is utilized to extract high variance features from electricity consumption data. Firstly, 11 new features are synthesized using statistical and electrical parameters from the user’s consumption history. Then, the synthesized features are used as input to metaheuristic techniques to find a subset of optimal features. Finally, the optimal features are fed as input to the denoising autoencoder to extract features with high variance. The ability of both metaheuristic and autoencoder techniques to select and extract features is measured using a support vector machine. The proposed system reduces the overfitting, storage, and computational overhead of ML classifiers. Moreover, we perform several experiments to verify the effectiveness of our proposed system and results reveal that the proposed system has better performance than its counterparts." @default.
- W4223485172 created "2022-04-15" @default.
- W4223485172 creator A5055380996 @default.
- W4223485172 creator A5061765479 @default.
- W4223485172 creator A5062215067 @default.
- W4223485172 creator A5071874921 @default.
- W4223485172 date "2022-08-01" @default.
- W4223485172 modified "2023-10-03" @default.
- W4223485172 title "Electricity theft detection using big data and genetic algorithm in electric power systems" @default.
- W4223485172 cites W1973658157 @default.
- W4223485172 cites W1984419556 @default.
- W4223485172 cites W2014252769 @default.
- W4223485172 cites W2108558074 @default.
- W4223485172 cites W2139974998 @default.
- W4223485172 cites W2160625801 @default.
- W4223485172 cites W2212529815 @default.
- W4223485172 cites W2343530358 @default.
- W4223485172 cites W2776990447 @default.
- W4223485172 cites W2788544268 @default.
- W4223485172 cites W2801242023 @default.
- W4223485172 cites W2831439818 @default.
- W4223485172 cites W2883554196 @default.
- W4223485172 cites W2894817759 @default.
- W4223485172 cites W2910992412 @default.
- W4223485172 cites W2944749462 @default.
- W4223485172 cites W2965226712 @default.
- W4223485172 cites W2973055534 @default.
- W4223485172 cites W2975154836 @default.
- W4223485172 cites W2978986055 @default.
- W4223485172 cites W2998161714 @default.
- W4223485172 cites W3005548505 @default.
- W4223485172 cites W3033877814 @default.
- W4223485172 cites W3080094819 @default.
- W4223485172 cites W3089677278 @default.
- W4223485172 cites W3094704314 @default.
- W4223485172 cites W3095941833 @default.
- W4223485172 cites W3138780148 @default.
- W4223485172 cites W3149578452 @default.
- W4223485172 cites W3187717620 @default.
- W4223485172 cites W3212413828 @default.
- W4223485172 cites W4205684906 @default.
- W4223485172 cites W4206151196 @default.
- W4223485172 doi "https://doi.org/10.1016/j.epsr.2022.107975" @default.
- W4223485172 hasPublicationYear "2022" @default.
- W4223485172 type Work @default.
- W4223485172 citedByCount "7" @default.
- W4223485172 countsByYear W42234851722022 @default.
- W4223485172 countsByYear W42234851722023 @default.
- W4223485172 crossrefType "journal-article" @default.
- W4223485172 hasAuthorship W4223485172A5055380996 @default.
- W4223485172 hasAuthorship W4223485172A5061765479 @default.
- W4223485172 hasAuthorship W4223485172A5062215067 @default.
- W4223485172 hasAuthorship W4223485172A5071874921 @default.
- W4223485172 hasConcept C101738243 @default.
- W4223485172 hasConcept C108583219 @default.
- W4223485172 hasConcept C109718341 @default.
- W4223485172 hasConcept C11413529 @default.
- W4223485172 hasConcept C119857082 @default.
- W4223485172 hasConcept C12267149 @default.
- W4223485172 hasConcept C154945302 @default.
- W4223485172 hasConcept C22019652 @default.
- W4223485172 hasConcept C41008148 @default.
- W4223485172 hasConcept C50644808 @default.
- W4223485172 hasConcept C8880873 @default.
- W4223485172 hasConceptScore W4223485172C101738243 @default.
- W4223485172 hasConceptScore W4223485172C108583219 @default.
- W4223485172 hasConceptScore W4223485172C109718341 @default.
- W4223485172 hasConceptScore W4223485172C11413529 @default.
- W4223485172 hasConceptScore W4223485172C119857082 @default.
- W4223485172 hasConceptScore W4223485172C12267149 @default.
- W4223485172 hasConceptScore W4223485172C154945302 @default.
- W4223485172 hasConceptScore W4223485172C22019652 @default.
- W4223485172 hasConceptScore W4223485172C41008148 @default.
- W4223485172 hasConceptScore W4223485172C50644808 @default.
- W4223485172 hasConceptScore W4223485172C8880873 @default.
- W4223485172 hasLocation W42234851721 @default.
- W4223485172 hasOpenAccess W4223485172 @default.
- W4223485172 hasPrimaryLocation W42234851721 @default.
- W4223485172 hasRelatedWork W1996541855 @default.
- W4223485172 hasRelatedWork W2766433866 @default.
- W4223485172 hasRelatedWork W2940336242 @default.
- W4223485172 hasRelatedWork W2946674783 @default.
- W4223485172 hasRelatedWork W2964465226 @default.
- W4223485172 hasRelatedWork W2989932438 @default.
- W4223485172 hasRelatedWork W3099765033 @default.
- W4223485172 hasRelatedWork W3195168932 @default.
- W4223485172 hasRelatedWork W4210794429 @default.
- W4223485172 hasRelatedWork W4283732135 @default.
- W4223485172 hasVolume "209" @default.
- W4223485172 isParatext "false" @default.
- W4223485172 isRetracted "false" @default.
- W4223485172 workType "article" @default.