Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223485577> ?p ?o ?g. }
- W4223485577 abstract "Exploring excitation energy transfer (EET) in light-harvesting complexes (LHCs) is essential for understanding the natural processes and design of highly-efficient photovoltaic devices. LHCs are open systems, where quantum effects may play a crucial role for almost perfect utilization of solar energy. Simulation of energy transfer with inclusion of quantum effects can be done within the framework of dissipative quantum dynamics (QD), which are computationally expensive. Thus, artificial intelligence (AI) offers itself as a tool for reducing the computational cost. Here we suggest AI-QD approach using AI to directly predict QD as a function of time and other parameters such as temperature, reorganization energy, etc., completely circumventing the need of recursive step-wise dynamics propagation in contrast to the traditional QD and alternative, recursive AI-based QD approaches. Our trajectory-learning AI-QD approach is able to predict the correct asymptotic behavior of QD at infinite time. We demonstrate AI-QD on seven-sites Fenna-Matthews-Olson (FMO) complex." @default.
- W4223485577 created "2022-04-15" @default.
- W4223485577 creator A5063208299 @default.
- W4223485577 creator A5063240098 @default.
- W4223485577 date "2022-04-11" @default.
- W4223485577 modified "2023-10-01" @default.
- W4223485577 title "Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics" @default.
- W4223485577 cites W1437335841 @default.
- W4223485577 cites W1522734439 @default.
- W4223485577 cites W1574733290 @default.
- W4223485577 cites W1975391438 @default.
- W4223485577 cites W1980799223 @default.
- W4223485577 cites W1981387309 @default.
- W4223485577 cites W2004976239 @default.
- W4223485577 cites W2005759672 @default.
- W4223485577 cites W2016051370 @default.
- W4223485577 cites W2026354169 @default.
- W4223485577 cites W2026766829 @default.
- W4223485577 cites W2035838814 @default.
- W4223485577 cites W2042194554 @default.
- W4223485577 cites W2042487980 @default.
- W4223485577 cites W2043605983 @default.
- W4223485577 cites W2052932598 @default.
- W4223485577 cites W2058468006 @default.
- W4223485577 cites W2065841049 @default.
- W4223485577 cites W2072350015 @default.
- W4223485577 cites W2073034190 @default.
- W4223485577 cites W2079824144 @default.
- W4223485577 cites W2080879353 @default.
- W4223485577 cites W2088307177 @default.
- W4223485577 cites W2090062662 @default.
- W4223485577 cites W2094221376 @default.
- W4223485577 cites W2107179162 @default.
- W4223485577 cites W2118492081 @default.
- W4223485577 cites W2127296814 @default.
- W4223485577 cites W2129525628 @default.
- W4223485577 cites W2140886269 @default.
- W4223485577 cites W2145838318 @default.
- W4223485577 cites W2148425143 @default.
- W4223485577 cites W2162328638 @default.
- W4223485577 cites W2172244271 @default.
- W4223485577 cites W2175881464 @default.
- W4223485577 cites W2234499082 @default.
- W4223485577 cites W2262482786 @default.
- W4223485577 cites W2314969497 @default.
- W4223485577 cites W2326506907 @default.
- W4223485577 cites W2470522861 @default.
- W4223485577 cites W2550143307 @default.
- W4223485577 cites W2562713819 @default.
- W4223485577 cites W2604353138 @default.
- W4223485577 cites W2620568942 @default.
- W4223485577 cites W2620877435 @default.
- W4223485577 cites W2737127163 @default.
- W4223485577 cites W2892035503 @default.
- W4223485577 cites W2898527066 @default.
- W4223485577 cites W2914465168 @default.
- W4223485577 cites W2951646322 @default.
- W4223485577 cites W2963774799 @default.
- W4223485577 cites W2964566169 @default.
- W4223485577 cites W2986298239 @default.
- W4223485577 cites W2995439361 @default.
- W4223485577 cites W3006284081 @default.
- W4223485577 cites W3085315008 @default.
- W4223485577 cites W3102915983 @default.
- W4223485577 cites W3105735143 @default.
- W4223485577 cites W3106418662 @default.
- W4223485577 cites W3122079685 @default.
- W4223485577 cites W3132956480 @default.
- W4223485577 cites W3133983161 @default.
- W4223485577 cites W3205926366 @default.
- W4223485577 cites W3210737842 @default.
- W4223485577 cites W3213083931 @default.
- W4223485577 cites W3214240156 @default.
- W4223485577 cites W4245751642 @default.
- W4223485577 doi "https://doi.org/10.1038/s41467-022-29621-w" @default.
- W4223485577 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35411054" @default.
- W4223485577 hasPublicationYear "2022" @default.
- W4223485577 type Work @default.
- W4223485577 citedByCount "15" @default.
- W4223485577 countsByYear W42234855772022 @default.
- W4223485577 countsByYear W42234855772023 @default.
- W4223485577 crossrefType "journal-article" @default.
- W4223485577 hasAuthorship W4223485577A5063208299 @default.
- W4223485577 hasAuthorship W4223485577A5063240098 @default.
- W4223485577 hasBestOaLocation W42234855771 @default.
- W4223485577 hasConcept C106447425 @default.
- W4223485577 hasConcept C121332964 @default.
- W4223485577 hasConcept C124657808 @default.
- W4223485577 hasConcept C13662910 @default.
- W4223485577 hasConcept C154945302 @default.
- W4223485577 hasConcept C186370098 @default.
- W4223485577 hasConcept C41008148 @default.
- W4223485577 hasConcept C61696701 @default.
- W4223485577 hasConcept C62520636 @default.
- W4223485577 hasConcept C83581075 @default.
- W4223485577 hasConcept C84114770 @default.
- W4223485577 hasConcept C99692599 @default.
- W4223485577 hasConceptScore W4223485577C106447425 @default.
- W4223485577 hasConceptScore W4223485577C121332964 @default.
- W4223485577 hasConceptScore W4223485577C124657808 @default.