Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223490271> ?p ?o ?g. }
- W4223490271 abstract "Abstract Background Theoretically, artificial intelligence can provide an accurate automatic solution to measure right ventricular (RV) ejection fraction (RVEF) from cardiovascular magnetic resonance (CMR) images, despite the complex RV geometry. However, in our recent study, commercially available deep learning (DL) algorithms for RVEF quantification performed poorly in some patients. The current study was designed to test the hypothesis that quantification of RV function could be improved in these patients by using more diverse CMR datasets in addition to domain-specific quantitative performance evaluation metrics during the cross-validation phase of DL algorithm development. Methods We identified 100 patients from our prior study who had the largest differences between manually measured and automated RVEF values. Automated RVEF measurements were performed using the original version of the algorithm (DL1), an updated version (DL2) developed from a dataset that included a wider range of RV pathology and validated using multiple domain-specific quantitative performance evaluation metrics, and conventional methodology performed by a core laboratory (CORE). Each of the DL-RVEF approaches was compared against CORE-RVEF reference values using linear regression and Bland–Altman analyses. Additionally, RVEF values were classified into 3 categories: ≤ 35%, 35–50%, and ≥ 50%. Agreement between RVEF classifications made by the DL approaches and the CORE measurements was tested. Results CORE-RVEF and DL-RVEFs were obtained in all patients (feasibility of 100%). DL2-RVEF correlated with CORE-RVEF better than DL1-RVEF (r = 0.87 vs. r = 0.42), with narrower limits of agreement. As a result, DL2 algorithm also showed increasing accuracy from 0.53 to 0.80 for categorizing RV function. Conclusions The use of a new DL algorithm cross-validated on a dataset with a wide range of RV pathology using multiple domain-specific metrics resulted in a considerable improvement in the accuracy of automated RVEF measurements. This improvement was demonstrated in patients whose images were the most challenging and resulted in the largest RVEF errors. These findings underscore the critical importance of this strategy in the development of DL approaches for automated CMR measurements." @default.
- W4223490271 created "2022-04-15" @default.
- W4223490271 creator A5000172872 @default.
- W4223490271 creator A5013756287 @default.
- W4223490271 creator A5016105867 @default.
- W4223490271 creator A5021369527 @default.
- W4223490271 creator A5022538261 @default.
- W4223490271 creator A5023921816 @default.
- W4223490271 creator A5026462731 @default.
- W4223490271 creator A5039107780 @default.
- W4223490271 creator A5051434566 @default.
- W4223490271 creator A5058210982 @default.
- W4223490271 creator A5059338302 @default.
- W4223490271 creator A5062004763 @default.
- W4223490271 creator A5073845715 @default.
- W4223490271 creator A5074742227 @default.
- W4223490271 creator A5086178238 @default.
- W4223490271 creator A5088405854 @default.
- W4223490271 date "2022-04-11" @default.
- W4223490271 modified "2023-10-18" @default.
- W4223490271 title "Assessment of right ventricular size and function from cardiovascular magnetic resonance images using artificial intelligence" @default.
- W4223490271 cites W1835198200 @default.
- W4223490271 cites W1864092193 @default.
- W4223490271 cites W1909740415 @default.
- W4223490271 cites W1987229393 @default.
- W4223490271 cites W1998912637 @default.
- W4223490271 cites W2014652466 @default.
- W4223490271 cites W2065677793 @default.
- W4223490271 cites W2084160023 @default.
- W4223490271 cites W2116087813 @default.
- W4223490271 cites W2155137238 @default.
- W4223490271 cites W2268216939 @default.
- W4223490271 cites W2427094903 @default.
- W4223490271 cites W2579231017 @default.
- W4223490271 cites W2579387041 @default.
- W4223490271 cites W2588773529 @default.
- W4223490271 cites W2607368991 @default.
- W4223490271 cites W2757787304 @default.
- W4223490271 cites W2764338100 @default.
- W4223490271 cites W2804047627 @default.
- W4223490271 cites W2891759811 @default.
- W4223490271 cites W2918590102 @default.
- W4223490271 cites W2921924651 @default.
- W4223490271 cites W2940793653 @default.
- W4223490271 cites W2944902362 @default.
- W4223490271 cites W2945390471 @default.
- W4223490271 cites W2948071063 @default.
- W4223490271 cites W2997440113 @default.
- W4223490271 cites W3081989896 @default.
- W4223490271 cites W3086661387 @default.
- W4223490271 cites W3106057905 @default.
- W4223490271 cites W3137454190 @default.
- W4223490271 cites W3156457909 @default.
- W4223490271 cites W3158444002 @default.
- W4223490271 cites W3165494136 @default.
- W4223490271 cites W3178664380 @default.
- W4223490271 cites W3206167738 @default.
- W4223490271 cites W4226199676 @default.
- W4223490271 cites W4247196300 @default.
- W4223490271 cites W4289887258 @default.
- W4223490271 doi "https://doi.org/10.1186/s12968-022-00861-5" @default.
- W4223490271 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35410226" @default.
- W4223490271 hasPublicationYear "2022" @default.
- W4223490271 type Work @default.
- W4223490271 citedByCount "9" @default.
- W4223490271 countsByYear W42234902712022 @default.
- W4223490271 countsByYear W42234902712023 @default.
- W4223490271 crossrefType "journal-article" @default.
- W4223490271 hasAuthorship W4223490271A5000172872 @default.
- W4223490271 hasAuthorship W4223490271A5013756287 @default.
- W4223490271 hasAuthorship W4223490271A5016105867 @default.
- W4223490271 hasAuthorship W4223490271A5021369527 @default.
- W4223490271 hasAuthorship W4223490271A5022538261 @default.
- W4223490271 hasAuthorship W4223490271A5023921816 @default.
- W4223490271 hasAuthorship W4223490271A5026462731 @default.
- W4223490271 hasAuthorship W4223490271A5039107780 @default.
- W4223490271 hasAuthorship W4223490271A5051434566 @default.
- W4223490271 hasAuthorship W4223490271A5058210982 @default.
- W4223490271 hasAuthorship W4223490271A5059338302 @default.
- W4223490271 hasAuthorship W4223490271A5062004763 @default.
- W4223490271 hasAuthorship W4223490271A5073845715 @default.
- W4223490271 hasAuthorship W4223490271A5074742227 @default.
- W4223490271 hasAuthorship W4223490271A5086178238 @default.
- W4223490271 hasAuthorship W4223490271A5088405854 @default.
- W4223490271 hasBestOaLocation W42234902711 @default.
- W4223490271 hasConcept C119857082 @default.
- W4223490271 hasConcept C154945302 @default.
- W4223490271 hasConcept C2164484 @default.
- W4223490271 hasConcept C41008148 @default.
- W4223490271 hasConcept C71924100 @default.
- W4223490271 hasConcept C76155785 @default.
- W4223490271 hasConceptScore W4223490271C119857082 @default.
- W4223490271 hasConceptScore W4223490271C154945302 @default.
- W4223490271 hasConceptScore W4223490271C2164484 @default.
- W4223490271 hasConceptScore W4223490271C41008148 @default.
- W4223490271 hasConceptScore W4223490271C71924100 @default.
- W4223490271 hasConceptScore W4223490271C76155785 @default.
- W4223490271 hasIssue "1" @default.
- W4223490271 hasLocation W42234902711 @default.
- W4223490271 hasLocation W42234902712 @default.