Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223490374> ?p ?o ?g. }
- W4223490374 endingPage "108254" @default.
- W4223490374 startingPage "108254" @default.
- W4223490374 abstract "Floating objects in rivers and streams present a growing problem, not only as they may cause clogging of bridges and other hydraulic structures, and consequently floods, but also because they can have a diverse impact on river (and marine) ecosystems, either positive (in case of in-channel wood) or negative (in case of anthropogenic floating objects). To automatically identify different types of floating objects (i.e., wood pieces, EPS and XPS boards, and plastic and metal containers) and their volumes in an open channel, we propose a novel methodology based on non-intrusive measuring methods and machine learning. To this end, we tested the combination of an industrial 2D laser scanner, a high-speed camera, and an ultrasonic sensor. In the laboratory experiment, 36 samples were scanned separately, two to three times in a row, resulting in 77 raw LIDAR clouds and image sequences. Raw data were post-processed with custom-developed algorithms to determine the volumes of samples above the water surface and their intensity histograms. The latter were analyzed with the machine learning algorithm to distinguish between different material types of floating objects. For each of them, the material density was assigned. Based on the identified floating object's material type, pre-assigned density, and measured volume above the water surface, the sample volumes were calculated and compared with the actual ones determined before setting up the experiment. The results show that the proposed approach enables material recognition with accuracy higher than 90%. The average volume calculation error based on detected material type, assigned densities, and measured floating object's volume above the water surface is approx. 2%. The proposed methodology proved promising for automatic differentiation between different types of floating objects and remote measurement of their volume. To use the method in real-world applications (e.g., on bridges) for forecasting downstream quantities of floating objects, and consequently adjusting their management accordingly, additional measurements are needed, focusing on simultaneous scanning of multiple floating objects, under different flow conditions." @default.
- W4223490374 created "2022-04-15" @default.
- W4223490374 creator A5000675672 @default.
- W4223490374 creator A5027248883 @default.
- W4223490374 creator A5037784416 @default.
- W4223490374 creator A5052242258 @default.
- W4223490374 date "2022-07-01" @default.
- W4223490374 modified "2023-10-14" @default.
- W4223490374 title "Analysis of floating objects based on non-intrusive measuring methods and machine learning" @default.
- W4223490374 cites W1500766476 @default.
- W4223490374 cites W1564408170 @default.
- W4223490374 cites W1666903118 @default.
- W4223490374 cites W1940977828 @default.
- W4223490374 cites W2024231939 @default.
- W4223490374 cites W2072588783 @default.
- W4223490374 cites W2117150059 @default.
- W4223490374 cites W2142188817 @default.
- W4223490374 cites W2161304919 @default.
- W4223490374 cites W2256682908 @default.
- W4223490374 cites W2261114310 @default.
- W4223490374 cites W2342657267 @default.
- W4223490374 cites W2438434775 @default.
- W4223490374 cites W2463924800 @default.
- W4223490374 cites W2547685746 @default.
- W4223490374 cites W2616908579 @default.
- W4223490374 cites W2738692848 @default.
- W4223490374 cites W2793384787 @default.
- W4223490374 cites W2797957951 @default.
- W4223490374 cites W2895252281 @default.
- W4223490374 cites W2924405552 @default.
- W4223490374 cites W2938310353 @default.
- W4223490374 cites W2968517452 @default.
- W4223490374 cites W2970492403 @default.
- W4223490374 cites W2994604001 @default.
- W4223490374 cites W3005326066 @default.
- W4223490374 cites W3006157669 @default.
- W4223490374 cites W3007372356 @default.
- W4223490374 cites W3015993981 @default.
- W4223490374 cites W3018143538 @default.
- W4223490374 cites W3030425315 @default.
- W4223490374 cites W3099487920 @default.
- W4223490374 cites W3106619944 @default.
- W4223490374 cites W3147644407 @default.
- W4223490374 cites W3193379594 @default.
- W4223490374 cites W4231197133 @default.
- W4223490374 cites W4244238212 @default.
- W4223490374 cites W831149547 @default.
- W4223490374 doi "https://doi.org/10.1016/j.geomorph.2022.108254" @default.
- W4223490374 hasPublicationYear "2022" @default.
- W4223490374 type Work @default.
- W4223490374 citedByCount "1" @default.
- W4223490374 countsByYear W42234903742023 @default.
- W4223490374 crossrefType "journal-article" @default.
- W4223490374 hasAuthorship W4223490374A5000675672 @default.
- W4223490374 hasAuthorship W4223490374A5027248883 @default.
- W4223490374 hasAuthorship W4223490374A5037784416 @default.
- W4223490374 hasAuthorship W4223490374A5052242258 @default.
- W4223490374 hasBestOaLocation W42234903741 @default.
- W4223490374 hasConcept C115961682 @default.
- W4223490374 hasConcept C120665830 @default.
- W4223490374 hasConcept C121332964 @default.
- W4223490374 hasConcept C127162648 @default.
- W4223490374 hasConcept C127313418 @default.
- W4223490374 hasConcept C141349535 @default.
- W4223490374 hasConcept C154945302 @default.
- W4223490374 hasConcept C166957645 @default.
- W4223490374 hasConcept C185592680 @default.
- W4223490374 hasConcept C198531522 @default.
- W4223490374 hasConcept C20556612 @default.
- W4223490374 hasConcept C2778152828 @default.
- W4223490374 hasConcept C2779751349 @default.
- W4223490374 hasConcept C31258907 @default.
- W4223490374 hasConcept C31972630 @default.
- W4223490374 hasConcept C41008148 @default.
- W4223490374 hasConcept C43617362 @default.
- W4223490374 hasConcept C51399673 @default.
- W4223490374 hasConcept C520434653 @default.
- W4223490374 hasConcept C53533937 @default.
- W4223490374 hasConcept C62520636 @default.
- W4223490374 hasConcept C62649853 @default.
- W4223490374 hasConcept C95457728 @default.
- W4223490374 hasConceptScore W4223490374C115961682 @default.
- W4223490374 hasConceptScore W4223490374C120665830 @default.
- W4223490374 hasConceptScore W4223490374C121332964 @default.
- W4223490374 hasConceptScore W4223490374C127162648 @default.
- W4223490374 hasConceptScore W4223490374C127313418 @default.
- W4223490374 hasConceptScore W4223490374C141349535 @default.
- W4223490374 hasConceptScore W4223490374C154945302 @default.
- W4223490374 hasConceptScore W4223490374C166957645 @default.
- W4223490374 hasConceptScore W4223490374C185592680 @default.
- W4223490374 hasConceptScore W4223490374C198531522 @default.
- W4223490374 hasConceptScore W4223490374C20556612 @default.
- W4223490374 hasConceptScore W4223490374C2778152828 @default.
- W4223490374 hasConceptScore W4223490374C2779751349 @default.
- W4223490374 hasConceptScore W4223490374C31258907 @default.
- W4223490374 hasConceptScore W4223490374C31972630 @default.
- W4223490374 hasConceptScore W4223490374C41008148 @default.
- W4223490374 hasConceptScore W4223490374C43617362 @default.