Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223491976> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4223491976 abstract "Plant breeders, scientists, and commercial producers commonly use growth rate as an integrated signal of crop productivity and stress. Plant growth monitoring is often done destructively via growth rate estimation by harvesting plants at different growth stages and simply weighing each individual plant. Within plant breeding and research applications, and more recently in commercial applications, non-destructive growth monitoring is done using computer vision to segment plants in images from the background, either in 2D or 3D, and relating these image-based features to destructive biomass measurements. Recent advancements in machine learning have improved image-based localization and detection of plants, but such techniques are not well suited to make biomass predictions when there is significant self-occlusion or occlusion from neighboring plants, such as those encountered under leafy green production in controlled environment agriculture. To enable prediction of plant biomass under occluded growing conditions, we develop an end-to-end deep learning approach that directly predicts lettuce plant biomass from color and depth image data as provided by a low cost and commercially available sensor. We test the performance of the proposed deep neural network for lettuce production, observing a mean prediction error of 7.3% on a comprehensive test dataset of 864 individuals and substantially outperforming previous work on plant biomass estimation. The modeling approach is robust to the busy and occluded scenes often found in commercial leafy green production and requires only measured mass values for training. We then demonstrate that this level of prediction accuracy allows for rapid, non-destructive detection of changes in biomass accumulation due to experimentally induced stress induction in as little as 2 days. Using this method growers may observe and react to changes in plant-environment interactions in near real time. Moreover, we expect that such a sensitive technique for non-destructive biomass estimation will enable novel research and breeding of improved productivity and yield in response to stress." @default.
- W4223491976 created "2022-04-15" @default.
- W4223491976 creator A5022634027 @default.
- W4223491976 creator A5052228885 @default.
- W4223491976 creator A5066474528 @default.
- W4223491976 date "2022-04-13" @default.
- W4223491976 modified "2023-10-15" @default.
- W4223491976 title "Non-destructive Plant Biomass Monitoring With High Spatio-Temporal Resolution via Proximal RGB-D Imagery and End-to-End Deep Learning" @default.
- W4223491976 cites W1444214650 @default.
- W4223491976 cites W1565402342 @default.
- W4223491976 cites W1966271002 @default.
- W4223491976 cites W1984245770 @default.
- W4223491976 cites W1992258219 @default.
- W4223491976 cites W2025468691 @default.
- W4223491976 cites W2030627010 @default.
- W4223491976 cites W2058164160 @default.
- W4223491976 cites W2084597394 @default.
- W4223491976 cites W2092191900 @default.
- W4223491976 cites W2114590266 @default.
- W4223491976 cites W2151753558 @default.
- W4223491976 cites W2318802957 @default.
- W4223491976 cites W2521630604 @default.
- W4223491976 cites W2560609797 @default.
- W4223491976 cites W2794095636 @default.
- W4223491976 cites W2891950633 @default.
- W4223491976 cites W2894202761 @default.
- W4223491976 cites W2916052001 @default.
- W4223491976 cites W2929704733 @default.
- W4223491976 cites W2980793717 @default.
- W4223491976 cites W2983552694 @default.
- W4223491976 cites W3026566795 @default.
- W4223491976 cites W3046517933 @default.
- W4223491976 cites W3102564565 @default.
- W4223491976 doi "https://doi.org/10.3389/fpls.2022.758818" @default.
- W4223491976 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35498682" @default.
- W4223491976 hasPublicationYear "2022" @default.
- W4223491976 type Work @default.
- W4223491976 citedByCount "12" @default.
- W4223491976 countsByYear W42234919762022 @default.
- W4223491976 countsByYear W42234919762023 @default.
- W4223491976 crossrefType "journal-article" @default.
- W4223491976 hasAuthorship W4223491976A5022634027 @default.
- W4223491976 hasAuthorship W4223491976A5052228885 @default.
- W4223491976 hasAuthorship W4223491976A5066474528 @default.
- W4223491976 hasBestOaLocation W42234919761 @default.
- W4223491976 hasConcept C108583219 @default.
- W4223491976 hasConcept C115540264 @default.
- W4223491976 hasConcept C118518473 @default.
- W4223491976 hasConcept C120217122 @default.
- W4223491976 hasConcept C127313418 @default.
- W4223491976 hasConcept C127413603 @default.
- W4223491976 hasConcept C154945302 @default.
- W4223491976 hasConcept C18903297 @default.
- W4223491976 hasConcept C39432304 @default.
- W4223491976 hasConcept C41008148 @default.
- W4223491976 hasConcept C62649853 @default.
- W4223491976 hasConcept C6557445 @default.
- W4223491976 hasConcept C82990744 @default.
- W4223491976 hasConcept C86803240 @default.
- W4223491976 hasConcept C88463610 @default.
- W4223491976 hasConceptScore W4223491976C108583219 @default.
- W4223491976 hasConceptScore W4223491976C115540264 @default.
- W4223491976 hasConceptScore W4223491976C118518473 @default.
- W4223491976 hasConceptScore W4223491976C120217122 @default.
- W4223491976 hasConceptScore W4223491976C127313418 @default.
- W4223491976 hasConceptScore W4223491976C127413603 @default.
- W4223491976 hasConceptScore W4223491976C154945302 @default.
- W4223491976 hasConceptScore W4223491976C18903297 @default.
- W4223491976 hasConceptScore W4223491976C39432304 @default.
- W4223491976 hasConceptScore W4223491976C41008148 @default.
- W4223491976 hasConceptScore W4223491976C62649853 @default.
- W4223491976 hasConceptScore W4223491976C6557445 @default.
- W4223491976 hasConceptScore W4223491976C82990744 @default.
- W4223491976 hasConceptScore W4223491976C86803240 @default.
- W4223491976 hasConceptScore W4223491976C88463610 @default.
- W4223491976 hasLocation W42234919761 @default.
- W4223491976 hasLocation W42234919762 @default.
- W4223491976 hasLocation W42234919763 @default.
- W4223491976 hasOpenAccess W4223491976 @default.
- W4223491976 hasPrimaryLocation W42234919761 @default.
- W4223491976 hasRelatedWork W1551473783 @default.
- W4223491976 hasRelatedWork W2059547969 @default.
- W4223491976 hasRelatedWork W2170509036 @default.
- W4223491976 hasRelatedWork W2382920002 @default.
- W4223491976 hasRelatedWork W2912977869 @default.
- W4223491976 hasRelatedWork W2995581643 @default.
- W4223491976 hasRelatedWork W3158270159 @default.
- W4223491976 hasRelatedWork W3195856620 @default.
- W4223491976 hasRelatedWork W3209610942 @default.
- W4223491976 hasRelatedWork W4385467343 @default.
- W4223491976 hasVolume "13" @default.
- W4223491976 isParatext "false" @default.
- W4223491976 isRetracted "false" @default.
- W4223491976 workType "article" @default.