Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223495161> ?p ?o ?g. }
- W4223495161 abstract "Abstract Microbial fuel cells (MFCs) are among the newest bioelectrical devices that have attracted significant attention because they convert biodegradable organic matter to electricity. MFC design can be improved by understanding and predicting the performance of MFC under different conditions and substrate concentrations. However, few mathematical models have been investigated due to problems caused by the high sensitivity of MFC systems. In this research, a multilayer neural network (NN) was used to predict the generated power of a cell with three inputs (concentration, time, and resistance). Response surface methodology with factors including the number of first layer neurons, number of second layer neurons, training epochs, validation check, and training percentage was used to obtain the optimum structure of the network, and mean squared error (MSE). NN had the minimum MSE when the Number of neurons in the first and second hidden layers, the training epochs, validation check, training percentage were 28, 20, 1000, 100, and 70, respectively. This built network had an excellent ability to predict, and was 98%. According to the results, increasing COD concentration increases generated power and system utilization time. In addition, reducing the external resistance up to 100 Ω can lead to more power obtained." @default.
- W4223495161 created "2022-04-15" @default.
- W4223495161 creator A5067236402 @default.
- W4223495161 creator A5073382312 @default.
- W4223495161 date "2022-04-20" @default.
- W4223495161 modified "2023-10-02" @default.
- W4223495161 title "Optimization of an artificial neural network topology using response surface methodology for microbial fuel cell power prediction" @default.
- W4223495161 cites W1967109380 @default.
- W4223495161 cites W1969108904 @default.
- W4223495161 cites W1970377394 @default.
- W4223495161 cites W1983653360 @default.
- W4223495161 cites W1985812856 @default.
- W4223495161 cites W1988975355 @default.
- W4223495161 cites W1992230032 @default.
- W4223495161 cites W2006829425 @default.
- W4223495161 cites W2010503974 @default.
- W4223495161 cites W2012656095 @default.
- W4223495161 cites W2013196231 @default.
- W4223495161 cites W2021289275 @default.
- W4223495161 cites W2023840808 @default.
- W4223495161 cites W2025722249 @default.
- W4223495161 cites W2029850555 @default.
- W4223495161 cites W2030405646 @default.
- W4223495161 cites W2039241535 @default.
- W4223495161 cites W2043803578 @default.
- W4223495161 cites W2059852492 @default.
- W4223495161 cites W2068912744 @default.
- W4223495161 cites W2070490064 @default.
- W4223495161 cites W2098334472 @default.
- W4223495161 cites W2102017823 @default.
- W4223495161 cites W2137356002 @default.
- W4223495161 cites W2150152662 @default.
- W4223495161 cites W2154172373 @default.
- W4223495161 cites W2319520200 @default.
- W4223495161 cites W2321278764 @default.
- W4223495161 cites W2491331447 @default.
- W4223495161 cites W2561638654 @default.
- W4223495161 cites W2570977913 @default.
- W4223495161 cites W2607454347 @default.
- W4223495161 cites W2608405216 @default.
- W4223495161 cites W2774316114 @default.
- W4223495161 cites W2797203662 @default.
- W4223495161 cites W2885599165 @default.
- W4223495161 cites W2979475937 @default.
- W4223495161 cites W2990837320 @default.
- W4223495161 cites W3015537897 @default.
- W4223495161 cites W3037199353 @default.
- W4223495161 cites W3045757808 @default.
- W4223495161 cites W3047623305 @default.
- W4223495161 cites W3047804804 @default.
- W4223495161 cites W3088563859 @default.
- W4223495161 cites W3089253459 @default.
- W4223495161 cites W3097703003 @default.
- W4223495161 cites W3121089996 @default.
- W4223495161 cites W3122299181 @default.
- W4223495161 cites W3125001332 @default.
- W4223495161 cites W3134790773 @default.
- W4223495161 cites W3162661952 @default.
- W4223495161 cites W3183787761 @default.
- W4223495161 cites W3193619353 @default.
- W4223495161 cites W4206979490 @default.
- W4223495161 cites W4244660446 @default.
- W4223495161 doi "https://doi.org/10.1002/btpr.3258" @default.
- W4223495161 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35404543" @default.
- W4223495161 hasPublicationYear "2022" @default.
- W4223495161 type Work @default.
- W4223495161 citedByCount "2" @default.
- W4223495161 countsByYear W42234951612023 @default.
- W4223495161 crossrefType "journal-article" @default.
- W4223495161 hasAuthorship W4223495161A5067236402 @default.
- W4223495161 hasAuthorship W4223495161A5073382312 @default.
- W4223495161 hasConcept C105795698 @default.
- W4223495161 hasConcept C119857082 @default.
- W4223495161 hasConcept C121332964 @default.
- W4223495161 hasConcept C127413603 @default.
- W4223495161 hasConcept C139945424 @default.
- W4223495161 hasConcept C150077022 @default.
- W4223495161 hasConcept C154945302 @default.
- W4223495161 hasConcept C163258240 @default.
- W4223495161 hasConcept C165337572 @default.
- W4223495161 hasConcept C171250308 @default.
- W4223495161 hasConcept C183696295 @default.
- W4223495161 hasConcept C186060115 @default.
- W4223495161 hasConcept C192562407 @default.
- W4223495161 hasConcept C21200559 @default.
- W4223495161 hasConcept C21880701 @default.
- W4223495161 hasConcept C24326235 @default.
- W4223495161 hasConcept C2779227376 @default.
- W4223495161 hasConcept C33923547 @default.
- W4223495161 hasConcept C39432304 @default.
- W4223495161 hasConcept C41008148 @default.
- W4223495161 hasConcept C423512 @default.
- W4223495161 hasConcept C50644808 @default.
- W4223495161 hasConcept C62520636 @default.
- W4223495161 hasConcept C86803240 @default.
- W4223495161 hasConceptScore W4223495161C105795698 @default.
- W4223495161 hasConceptScore W4223495161C119857082 @default.
- W4223495161 hasConceptScore W4223495161C121332964 @default.
- W4223495161 hasConceptScore W4223495161C127413603 @default.
- W4223495161 hasConceptScore W4223495161C139945424 @default.