Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223537701> ?p ?o ?g. }
- W4223537701 endingPage "107279" @default.
- W4223537701 startingPage "107279" @default.
- W4223537701 abstract "• A novel magnetic field-assisted batch superfinishing (MABS) method was developed for the mass polishing of thin-walled surface. • The MABS method can achieve mass polishing of a number of thin-walled components currently with nanometric surface roughness and micrometre form accuracy. • Kinematic interaction between the magnetic brush and the thin-walled component, and surface generation mechanisms during MABS were unveiled for the first time. • A material removal distribution model during MABS was built to predict the material removal and optimize the process. • The polishing results shed some light on the broad application prospects of the MABS process, including surgical knives, electrosurgical tools, forceps, turbine blades , etc. Thin-walled components have been widely used in different kinds of fields such as aviation, automobiles, medical, etc. However, it is difficult to strike a balance between polishing efficiency and accuracy in the polishing of such components. Hence, this paper presents a novel magnetic field-assisted batch superfinishing (MABS) process which makes use of a magnetic field applied by two pairs of magnetic poles rotating outside an annular chamber mounted with a number of workpieces concurrently. The rotating magnetic brushes comprise magnetic particles and abrasives formed inside the chamber which impinge and remove materials from the workpiece. A theoretical and experimental investigation of the material removal in MABS is conducted on typical thin-walled components, including kinematic analysis of the brush motion, simulation of the magnetic field distribution and material removal distribution model. The experimental results indicate that the MABS process can be successfully used for batch polishing of thin-walled components while obtaining nanometric surface roughness. The developed material removal distribution model can be used to predict the material removal, so as to provide theoretical guidance of process optimization." @default.
- W4223537701 created "2022-04-15" @default.
- W4223537701 creator A5016270123 @default.
- W4223537701 creator A5026399808 @default.
- W4223537701 creator A5040607585 @default.
- W4223537701 creator A5041903491 @default.
- W4223537701 creator A5051004439 @default.
- W4223537701 creator A5052933227 @default.
- W4223537701 creator A5080086653 @default.
- W4223537701 date "2022-06-01" @default.
- W4223537701 modified "2023-10-12" @default.
- W4223537701 title "Magnetic field-assisted batch superfinishing on thin-walled components" @default.
- W4223537701 cites W1982554520 @default.
- W4223537701 cites W2001114182 @default.
- W4223537701 cites W2029272534 @default.
- W4223537701 cites W2032921488 @default.
- W4223537701 cites W2033784586 @default.
- W4223537701 cites W2050374998 @default.
- W4223537701 cites W2061256687 @default.
- W4223537701 cites W2063829424 @default.
- W4223537701 cites W2087187191 @default.
- W4223537701 cites W2105065689 @default.
- W4223537701 cites W2192210730 @default.
- W4223537701 cites W2206220405 @default.
- W4223537701 cites W2262650026 @default.
- W4223537701 cites W2402221581 @default.
- W4223537701 cites W2408156273 @default.
- W4223537701 cites W2430006432 @default.
- W4223537701 cites W2502579244 @default.
- W4223537701 cites W2580948442 @default.
- W4223537701 cites W2625572965 @default.
- W4223537701 cites W2734747856 @default.
- W4223537701 cites W2743042740 @default.
- W4223537701 cites W2755483041 @default.
- W4223537701 cites W2756161936 @default.
- W4223537701 cites W2765367566 @default.
- W4223537701 cites W2766062309 @default.
- W4223537701 cites W2790974596 @default.
- W4223537701 cites W2795733811 @default.
- W4223537701 cites W2903974045 @default.
- W4223537701 cites W2906549641 @default.
- W4223537701 cites W2908280493 @default.
- W4223537701 cites W2918170325 @default.
- W4223537701 cites W2940482644 @default.
- W4223537701 cites W2941238502 @default.
- W4223537701 cites W2945118632 @default.
- W4223537701 cites W2946163585 @default.
- W4223537701 cites W2946442728 @default.
- W4223537701 cites W2947999227 @default.
- W4223537701 cites W2959227020 @default.
- W4223537701 cites W2978783779 @default.
- W4223537701 cites W2981015549 @default.
- W4223537701 cites W2981317470 @default.
- W4223537701 cites W2994958910 @default.
- W4223537701 cites W3036908573 @default.
- W4223537701 cites W3046655275 @default.
- W4223537701 cites W3088010225 @default.
- W4223537701 cites W3089072207 @default.
- W4223537701 cites W3093004490 @default.
- W4223537701 cites W3119677413 @default.
- W4223537701 cites W3122829663 @default.
- W4223537701 cites W3131555393 @default.
- W4223537701 cites W3182339665 @default.
- W4223537701 cites W3183760247 @default.
- W4223537701 cites W3199027566 @default.
- W4223537701 cites W3202469766 @default.
- W4223537701 doi "https://doi.org/10.1016/j.ijmecsci.2022.107279" @default.
- W4223537701 hasPublicationYear "2022" @default.
- W4223537701 type Work @default.
- W4223537701 citedByCount "7" @default.
- W4223537701 countsByYear W42235377012022 @default.
- W4223537701 countsByYear W42235377012023 @default.
- W4223537701 crossrefType "journal-article" @default.
- W4223537701 hasAuthorship W4223537701A5016270123 @default.
- W4223537701 hasAuthorship W4223537701A5026399808 @default.
- W4223537701 hasAuthorship W4223537701A5040607585 @default.
- W4223537701 hasAuthorship W4223537701A5041903491 @default.
- W4223537701 hasAuthorship W4223537701A5051004439 @default.
- W4223537701 hasAuthorship W4223537701A5052933227 @default.
- W4223537701 hasAuthorship W4223537701A5080086653 @default.
- W4223537701 hasConcept C127413603 @default.
- W4223537701 hasConcept C159985019 @default.
- W4223537701 hasConcept C192562407 @default.
- W4223537701 hasConcept C202444582 @default.
- W4223537701 hasConcept C33923547 @default.
- W4223537701 hasConcept C78519656 @default.
- W4223537701 hasConcept C9652623 @default.
- W4223537701 hasConceptScore W4223537701C127413603 @default.
- W4223537701 hasConceptScore W4223537701C159985019 @default.
- W4223537701 hasConceptScore W4223537701C192562407 @default.
- W4223537701 hasConceptScore W4223537701C202444582 @default.
- W4223537701 hasConceptScore W4223537701C33923547 @default.
- W4223537701 hasConceptScore W4223537701C78519656 @default.
- W4223537701 hasConceptScore W4223537701C9652623 @default.
- W4223537701 hasLocation W42235377011 @default.
- W4223537701 hasOpenAccess W4223537701 @default.
- W4223537701 hasPrimaryLocation W42235377011 @default.
- W4223537701 hasRelatedWork W1994103032 @default.