Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223553647> ?p ?o ?g. }
- W4223553647 endingPage "120867" @default.
- W4223553647 startingPage "120867" @default.
- W4223553647 abstract "The study of the thermal decomposition of Fe2+-phyllosilicates and –silicates plays a crucial role in understanding the redox processes contributing to the global iron and hydrological cycles. In contrast to the widely accepted model of oxidation by incorporation of oxygen, Fe2+ oxidation of phyllosilicates and silicates studied under laboratory conditions is driven by a thermally induced dehydrogenation reaction, which proceeds as follows: Fe2+ + OH- → Fe3+ + Or2- + ½ H2↑. The processes of oxidation in Banded Iron Formation (BIF), both before and after the Great Oxidation Event, are debated between biotic and abiotic, and/or primary and secondary oxidation. Most BIFs have undergone various grades of metamorphism, including thermal events that support secondary oxidation and which control redox conditions. Here, Fe2+-rich minnesotaite, (Fe2+Mg)3Si4O10(OH)3, a common Fe2+-silicate occurring in BIFs, from an unaltered and unoxidized unit of the Biwabik Iron Formation (Minnesota, USA), was selected to study dehydrogenation as a potential secondary oxidation reaction of Fe-silicates in BIFs. The sample was heated thermogravimetrically (TG) under dynamic and isothermal conditions up to 1050 °C in dry N2 and synthetic air. Volatiles that evolved during heating were measured by a quadrupole mass spectrometer. The transitional and final heating products were examined by Mössbauer spectroscopy and X-ray powder diffraction (XRD). During the dynamic and isothermal heating, under inert and oxidizing atmospheric conditions, the minnesotaite structure underwent two reactions: dehydroxylation and oxidative dehydrogenation, producing H2O and H2 gas, respectively. Under dynamic heating in dry N2, dehydrogenation resulted in oxidation of ~16% of Fe2+ and ~0.09 wt.% H2 liberation. However, heating at 300, 350 and 400 °C for 48–80 hours in an inert atmosphere enhanced the progress of the reaction leading to the complete substitution of OH-Fe2+ by O-Fe3+, before dehydroxylation. When the sample was heated in synthetic air, despite high oxygen activity, oxidation by dehydrogenation occurredand the liberation of H2 in the presence of oxygen produced an excess of H2O at the sample surface. Dehydrogenation led to the formation of oxyminnesotaite, which is depleted in OH-, that showed greater thermal stability than Fe2+–minnesotaite. The final alteration products of minnesotaite (at 700–1050 °C) were hematite and maghemite when fully dehydrogenated in the presence of oxygen and ferric pyroxene and magnetite when the structure was partially dehydrogenated in the absence of oxygen. In this study, the mechanism of thermally induced oxidation of minnesotaite was thoroughly described and refers to the state of knowledge of thermal decomposition of other Fe-silicates and -phyllosilicates for the first time. Our results, together with other comprehensive studies regarding dehydrogenation, allows for a critical discussion of the reaction as one of the potential process of abiotic, secondary oxidation of Fe2+–silicates in BIFs to take place. A theoretical model of a dehydration sequence of minnesotaite during prograde metamorphism is proposed in the context of co-occurring dehydrogenation. A high Fe3+/Fet ratio corresponding to low OH/H2O content is diagnostic for dehydrogenated minerals; hence methodological and geological implementation may indicate and trace the reaction in geological environments." @default.
- W4223553647 created "2022-04-15" @default.
- W4223553647 creator A5025796345 @default.
- W4223553647 creator A5032145251 @default.
- W4223553647 creator A5045727242 @default.
- W4223553647 creator A5062085620 @default.
- W4223553647 date "2022-07-01" @default.
- W4223553647 modified "2023-10-15" @default.
- W4223553647 title "Thermal decomposition of minnesotaite and dehydrogenation during Fe2+ oxidation, with implications for redox reactions in Banded Iron Formations" @default.
- W4223553647 cites W1521685523 @default.
- W4223553647 cites W1674374414 @default.
- W4223553647 cites W1977874558 @default.
- W4223553647 cites W1979973132 @default.
- W4223553647 cites W1984756659 @default.
- W4223553647 cites W1985662095 @default.
- W4223553647 cites W1986508774 @default.
- W4223553647 cites W1991932600 @default.
- W4223553647 cites W1995684433 @default.
- W4223553647 cites W1997358308 @default.
- W4223553647 cites W2001653617 @default.
- W4223553647 cites W2001743379 @default.
- W4223553647 cites W2010275029 @default.
- W4223553647 cites W2018383247 @default.
- W4223553647 cites W2030996811 @default.
- W4223553647 cites W2031032181 @default.
- W4223553647 cites W2039789858 @default.
- W4223553647 cites W2041865540 @default.
- W4223553647 cites W2049120266 @default.
- W4223553647 cites W2050989783 @default.
- W4223553647 cites W2054453464 @default.
- W4223553647 cites W2063033526 @default.
- W4223553647 cites W2074428181 @default.
- W4223553647 cites W2080705589 @default.
- W4223553647 cites W2083184196 @default.
- W4223553647 cites W2083634702 @default.
- W4223553647 cites W2090144540 @default.
- W4223553647 cites W2095067925 @default.
- W4223553647 cites W2095658057 @default.
- W4223553647 cites W2106622021 @default.
- W4223553647 cites W2109714200 @default.
- W4223553647 cites W2112427012 @default.
- W4223553647 cites W2117451076 @default.
- W4223553647 cites W2132814927 @default.
- W4223553647 cites W2133940745 @default.
- W4223553647 cites W2149261636 @default.
- W4223553647 cites W2154118184 @default.
- W4223553647 cites W2228410629 @default.
- W4223553647 cites W2320876058 @default.
- W4223553647 cites W2332466196 @default.
- W4223553647 cites W2333465986 @default.
- W4223553647 cites W2334913586 @default.
- W4223553647 cites W2562330681 @default.
- W4223553647 cites W2569263730 @default.
- W4223553647 cites W2728922582 @default.
- W4223553647 cites W2783249011 @default.
- W4223553647 cites W2790045453 @default.
- W4223553647 cites W2794385374 @default.
- W4223553647 cites W2809870485 @default.
- W4223553647 cites W2885422851 @default.
- W4223553647 cites W2893134168 @default.
- W4223553647 cites W2898786298 @default.
- W4223553647 cites W2918674296 @default.
- W4223553647 cites W2951168107 @default.
- W4223553647 cites W3000332203 @default.
- W4223553647 cites W3009373220 @default.
- W4223553647 cites W3033408901 @default.
- W4223553647 cites W3151168007 @default.
- W4223553647 cites W3188684023 @default.
- W4223553647 cites W3217231361 @default.
- W4223553647 doi "https://doi.org/10.1016/j.chemgeo.2022.120867" @default.
- W4223553647 hasPublicationYear "2022" @default.
- W4223553647 type Work @default.
- W4223553647 citedByCount "1" @default.
- W4223553647 countsByYear W42235536472022 @default.
- W4223553647 crossrefType "journal-article" @default.
- W4223553647 hasAuthorship W4223553647A5025796345 @default.
- W4223553647 hasAuthorship W4223553647A5032145251 @default.
- W4223553647 hasAuthorship W4223553647A5045727242 @default.
- W4223553647 hasAuthorship W4223553647A5062085620 @default.
- W4223553647 hasConcept C119889771 @default.
- W4223553647 hasConcept C124681953 @default.
- W4223553647 hasConcept C160434732 @default.
- W4223553647 hasConcept C161790260 @default.
- W4223553647 hasConcept C178790620 @default.
- W4223553647 hasConcept C179104552 @default.
- W4223553647 hasConcept C185592680 @default.
- W4223553647 hasConcept C199289684 @default.
- W4223553647 hasConcept C2777335606 @default.
- W4223553647 hasConcept C2779131772 @default.
- W4223553647 hasConcept C2780786144 @default.
- W4223553647 hasConcept C55904794 @default.
- W4223553647 hasConcept C70854507 @default.
- W4223553647 hasConcept C77176794 @default.
- W4223553647 hasConcept C8010536 @default.
- W4223553647 hasConceptScore W4223553647C119889771 @default.
- W4223553647 hasConceptScore W4223553647C124681953 @default.
- W4223553647 hasConceptScore W4223553647C160434732 @default.
- W4223553647 hasConceptScore W4223553647C161790260 @default.