Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223576536> ?p ?o ?g. }
- W4223576536 endingPage "12072" @default.
- W4223576536 startingPage "12042" @default.
- W4223576536 abstract "In this research we assess and map groundwater potential in the Guelma Basin (northeastern Algeria) using an approach combining remote sensing, GIS, statistical and machine learning models. Four models were used including the frequency ratio model with both conventional (CFR) and modified (MFR) versions, the decision tree (DT), and the random forest (RF). For this purpose, firstly, thirteen hydro-geo-morphological variables influencing groundwater potential have been mapped using GIS and remote sensing techniques including elevation, slope, aspect, topographic wetness index, slope Length and Steepness factor, profile curvature, plan curvature, drainage density, distance to river, lineament and fault density, distance to faults and lineaments, lithology, and land use/land cover. Secondly, the groundwater potential was assessed and mapped based on the four models using the training data. Finally, the obtained groundwater potential maps of the four models have been validated using two approaches: (i) a statistical approach based on the receiver operating characteristics curves (ROC); (ii) a geophysical approach by interpreting the electrical resistivity tomography (ERT) results. The validation process gives the Random Forest method as the most accurate. The obtained map by this model is the main finding of this research, where the very high groundwater potential class occupies 8.25%. It is located mostly in the Guelma plain centre and in the northern part of the study area. The used approach and the obtained results may serve for water resource managers to improve groundwater resource planning and to resolve regional scale issues in this area or elsewhere." @default.
- W4223576536 created "2022-04-15" @default.
- W4223576536 creator A5012051391 @default.
- W4223576536 creator A5045678994 @default.
- W4223576536 creator A5051109849 @default.
- W4223576536 creator A5061192824 @default.
- W4223576536 creator A5066423450 @default.
- W4223576536 creator A5074604175 @default.
- W4223576536 creator A5079135121 @default.
- W4223576536 date "2022-04-19" @default.
- W4223576536 modified "2023-09-28" @default.
- W4223576536 title "Identification of groundwater potential zones using remote sensing, GIS, machine learning and electrical resistivity tomography techniques in Guelma basin, northeastern Algeria" @default.
- W4223576536 cites W1515948551 @default.
- W4223576536 cites W1534822136 @default.
- W4223576536 cites W1964135625 @default.
- W4223576536 cites W1977085977 @default.
- W4223576536 cites W1985288162 @default.
- W4223576536 cites W1989319038 @default.
- W4223576536 cites W1993317865 @default.
- W4223576536 cites W1995751710 @default.
- W4223576536 cites W2013341039 @default.
- W4223576536 cites W2013996674 @default.
- W4223576536 cites W2040990873 @default.
- W4223576536 cites W2056435747 @default.
- W4223576536 cites W2106371033 @default.
- W4223576536 cites W2139157027 @default.
- W4223576536 cites W2143296882 @default.
- W4223576536 cites W2152242052 @default.
- W4223576536 cites W2167794065 @default.
- W4223576536 cites W2278830514 @default.
- W4223576536 cites W2313324190 @default.
- W4223576536 cites W2487770199 @default.
- W4223576536 cites W2542420325 @default.
- W4223576536 cites W2593192809 @default.
- W4223576536 cites W2602515363 @default.
- W4223576536 cites W2606580569 @default.
- W4223576536 cites W2789455132 @default.
- W4223576536 cites W2878761843 @default.
- W4223576536 cites W2889025915 @default.
- W4223576536 cites W2911964244 @default.
- W4223576536 cites W2912253559 @default.
- W4223576536 cites W2913060516 @default.
- W4223576536 cites W2918094630 @default.
- W4223576536 cites W2967801159 @default.
- W4223576536 cites W2969945043 @default.
- W4223576536 cites W2975303157 @default.
- W4223576536 cites W3008867713 @default.
- W4223576536 cites W3015180749 @default.
- W4223576536 cites W3039708944 @default.
- W4223576536 cites W3049225736 @default.
- W4223576536 cites W3083610391 @default.
- W4223576536 cites W3196968202 @default.
- W4223576536 cites W4236137412 @default.
- W4223576536 doi "https://doi.org/10.1080/10106049.2022.2063408" @default.
- W4223576536 hasPublicationYear "2022" @default.
- W4223576536 type Work @default.
- W4223576536 citedByCount "4" @default.
- W4223576536 countsByYear W42235765362022 @default.
- W4223576536 countsByYear W42235765362023 @default.
- W4223576536 crossrefType "journal-article" @default.
- W4223576536 hasAuthorship W4223576536A5012051391 @default.
- W4223576536 hasAuthorship W4223576536A5045678994 @default.
- W4223576536 hasAuthorship W4223576536A5051109849 @default.
- W4223576536 hasAuthorship W4223576536A5061192824 @default.
- W4223576536 hasAuthorship W4223576536A5066423450 @default.
- W4223576536 hasAuthorship W4223576536A5074604175 @default.
- W4223576536 hasAuthorship W4223576536A5079135121 @default.
- W4223576536 hasConcept C119599485 @default.
- W4223576536 hasConcept C119857082 @default.
- W4223576536 hasConcept C127313418 @default.
- W4223576536 hasConcept C127413603 @default.
- W4223576536 hasConcept C147176958 @default.
- W4223576536 hasConcept C151730666 @default.
- W4223576536 hasConcept C169258074 @default.
- W4223576536 hasConcept C181843262 @default.
- W4223576536 hasConcept C187320778 @default.
- W4223576536 hasConcept C205649164 @default.
- W4223576536 hasConcept C2776898743 @default.
- W4223576536 hasConcept C2778755073 @default.
- W4223576536 hasConcept C2779989982 @default.
- W4223576536 hasConcept C2780648208 @default.
- W4223576536 hasConcept C37054046 @default.
- W4223576536 hasConcept C41008148 @default.
- W4223576536 hasConcept C4792198 @default.
- W4223576536 hasConcept C58640448 @default.
- W4223576536 hasConcept C60591178 @default.
- W4223576536 hasConcept C62649853 @default.
- W4223576536 hasConcept C66938386 @default.
- W4223576536 hasConcept C69990965 @default.
- W4223576536 hasConcept C76177295 @default.
- W4223576536 hasConcept C76886044 @default.
- W4223576536 hasConcept C77928131 @default.
- W4223576536 hasConcept C92596616 @default.
- W4223576536 hasConceptScore W4223576536C119599485 @default.
- W4223576536 hasConceptScore W4223576536C119857082 @default.
- W4223576536 hasConceptScore W4223576536C127313418 @default.
- W4223576536 hasConceptScore W4223576536C127413603 @default.
- W4223576536 hasConceptScore W4223576536C147176958 @default.