Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223582832> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4223582832 endingPage "118509" @default.
- W4223582832 startingPage "118509" @default.
- W4223582832 abstract "• Diffusion bonding was applied for the fabrication of flat plate PHPs. • Ultra-sharp grooves in the evaporator improved the heat transfer capacity of a PHP. • The proposed PHPs perform effectively for heat fluxes up to 1200 W (20.9 W/cm 2 ). • The gravity influence becomes negligible for powers beyond 600 W (10.4 W/ cm 2 ). • The PHPs appear to be a good alternative for temperature control of electronics. Pulsating heat pipe (PHP) is a very efficient solution for electronics cooling. Several strategies can be applied to improve the thermal performance of PHPs. In this context, the heat transfer enhancement of a flat plate pulsating heat pipe with a channel modification in the evaporator region, resulting in ultra sharp lateral grooves, was investigated experimentally. Chamfers were machined in the lateral walls of thirteen semi-circular cross section U-turn channels, drilled in flat copper plates. To form the sharp-grooved circular channels, two plates were faced against each other and diffusion bonded, resulting in a monolithic piece with high quality channels. The ultra sharp grooves had an angle of 29.1 ± 2.9°. The lateral grooves work as artificial nucleation sites, helping in the bubble formation, and act as a capillary medium, spreading the liquid over the evaporator region, delaying the dry-out. Therefore, the device could be less dependent on gravity, enabling it to be considered for applications in microgravity environments. To ascertain the efficiency of the proposed device, its performance was compared with another similar PHP with the same external geometry and with round ordinary cross-section channels of the same 2.5 mm channel diameter. Distilled water was selected as the working fluid, which, as predicted by literature models, worked at confinement conditions. As usual, the thermal behaviors of PHPs were characterized by their temperatures and pressures, depending on the operation conditions. The best filling ratio for each PHP was experimentally determined, considering heat loads from 20 up to 350 W (from 0.35 up to 6.1 W/cm 2 ). The influence of the ultra sharp grooves on the thermal performance of the PHP was investigated for a large range of power inputs, reaching up to 1200 W (20.9 W/cm 2 ), for the best filling ratio. The gravity influence in the PHP operation was evaluated by tests in three orientations: gravity-assisted, horizontal and against-gravity. Both cross-section profile PHPs performed effectively well for heat fluxes up to 20.9 W/ cm 2 , even in the against-gravity position, showing that the devices are suitable for temperature control of electronics, including those with high heat fluxes. Besides, the gravity effect could be neglected for heat powers beyond 600 W (10.4 W/ cm 2 ), which make them adequate for microgravity applications. The presence of ultra sharp grooves in the evaporator section of the PHP reduced by 2.1 °C the average evaporator temperature, decreased the temperature variations among sections and improved the thermal performance by 12% in the horizontal and gravity-assisted orientation." @default.
- W4223582832 created "2022-04-15" @default.
- W4223582832 creator A5008801353 @default.
- W4223582832 creator A5043603774 @default.
- W4223582832 creator A5060584806 @default.
- W4223582832 creator A5083454093 @default.
- W4223582832 date "2022-07-01" @default.
- W4223582832 modified "2023-10-07" @default.
- W4223582832 title "Novel flat plate pulsating heat pipe with ultra sharp grooves" @default.
- W4223582832 cites W1972271239 @default.
- W4223582832 cites W1986115893 @default.
- W4223582832 cites W1989549648 @default.
- W4223582832 cites W2005620485 @default.
- W4223582832 cites W2005693286 @default.
- W4223582832 cites W2006255676 @default.
- W4223582832 cites W2026679537 @default.
- W4223582832 cites W2035051704 @default.
- W4223582832 cites W2039096883 @default.
- W4223582832 cites W2050319063 @default.
- W4223582832 cites W2069292387 @default.
- W4223582832 cites W2075968286 @default.
- W4223582832 cites W2161618319 @default.
- W4223582832 cites W2284641956 @default.
- W4223582832 cites W2326809588 @default.
- W4223582832 cites W2329796109 @default.
- W4223582832 cites W2515576013 @default.
- W4223582832 cites W2549773573 @default.
- W4223582832 cites W2550421353 @default.
- W4223582832 cites W2594593777 @default.
- W4223582832 cites W2607122030 @default.
- W4223582832 cites W2620962400 @default.
- W4223582832 cites W2740027965 @default.
- W4223582832 cites W2781514383 @default.
- W4223582832 cites W2783488313 @default.
- W4223582832 cites W2801486403 @default.
- W4223582832 cites W2882980976 @default.
- W4223582832 cites W2921153856 @default.
- W4223582832 cites W2936626475 @default.
- W4223582832 cites W2981996977 @default.
- W4223582832 cites W3006463725 @default.
- W4223582832 cites W3014179407 @default.
- W4223582832 cites W3042868826 @default.
- W4223582832 cites W3059594549 @default.
- W4223582832 cites W3103136796 @default.
- W4223582832 cites W3111711426 @default.
- W4223582832 cites W3164844761 @default.
- W4223582832 cites W3174886170 @default.
- W4223582832 cites W3180567127 @default.
- W4223582832 cites W3212427529 @default.
- W4223582832 cites W3216589983 @default.
- W4223582832 doi "https://doi.org/10.1016/j.applthermaleng.2022.118509" @default.
- W4223582832 hasPublicationYear "2022" @default.
- W4223582832 type Work @default.
- W4223582832 citedByCount "6" @default.
- W4223582832 countsByYear W42235828322022 @default.
- W4223582832 countsByYear W42235828322023 @default.
- W4223582832 crossrefType "journal-article" @default.
- W4223582832 hasAuthorship W4223582832A5008801353 @default.
- W4223582832 hasAuthorship W4223582832A5043603774 @default.
- W4223582832 hasAuthorship W4223582832A5060584806 @default.
- W4223582832 hasAuthorship W4223582832A5083454093 @default.
- W4223582832 hasConcept C121332964 @default.
- W4223582832 hasConcept C127413603 @default.
- W4223582832 hasConcept C192562407 @default.
- W4223582832 hasConcept C37728375 @default.
- W4223582832 hasConcept C50517652 @default.
- W4223582832 hasConcept C57879066 @default.
- W4223582832 hasConcept C66938386 @default.
- W4223582832 hasConcept C78519656 @default.
- W4223582832 hasConceptScore W4223582832C121332964 @default.
- W4223582832 hasConceptScore W4223582832C127413603 @default.
- W4223582832 hasConceptScore W4223582832C192562407 @default.
- W4223582832 hasConceptScore W4223582832C37728375 @default.
- W4223582832 hasConceptScore W4223582832C50517652 @default.
- W4223582832 hasConceptScore W4223582832C57879066 @default.
- W4223582832 hasConceptScore W4223582832C66938386 @default.
- W4223582832 hasConceptScore W4223582832C78519656 @default.
- W4223582832 hasLocation W42235828321 @default.
- W4223582832 hasOpenAccess W4223582832 @default.
- W4223582832 hasPrimaryLocation W42235828321 @default.
- W4223582832 hasRelatedWork W2347848542 @default.
- W4223582832 hasRelatedWork W2351837897 @default.
- W4223582832 hasRelatedWork W2353516228 @default.
- W4223582832 hasRelatedWork W2372326873 @default.
- W4223582832 hasRelatedWork W2383783554 @default.
- W4223582832 hasRelatedWork W2384416889 @default.
- W4223582832 hasRelatedWork W2389324249 @default.
- W4223582832 hasRelatedWork W2393372144 @default.
- W4223582832 hasRelatedWork W2899084033 @default.
- W4223582832 hasRelatedWork W4315476309 @default.
- W4223582832 hasVolume "211" @default.
- W4223582832 isParatext "false" @default.
- W4223582832 isRetracted "false" @default.
- W4223582832 workType "article" @default.