Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223589738> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4223589738 endingPage "1773" @default.
- W4223589738 startingPage "1761" @default.
- W4223589738 abstract "Abstract Deep learning–based medical image segmentation is henceforth widely established as a powerful segmentation process. This article proposes a new U‐Net architecture based on a convolutional neural network for cytology image segmentation. This structure is more suitable to take into account pixel neighborhood in deconvolution. The goal is to develop an accurate segmentation method for white blood cells segmentation based on cells types features. This new proposed method yields a significant improvement compared to our previous work on the cytological medical dataset. In addition, the performance of the new architecture was also successfully tested on the Digital Retinal Image for Vessel Extraction databases benchmark. The images of this challenge are similar to our cytology image segmentation. Our approach achieved 25% relative improvement of the accuracy compared to the state‐of‐the‐art." @default.
- W4223589738 created "2022-04-15" @default.
- W4223589738 creator A5015997827 @default.
- W4223589738 creator A5044091224 @default.
- W4223589738 creator A5080981641 @default.
- W4223589738 date "2022-04-12" @default.
- W4223589738 modified "2023-10-17" @default.
- W4223589738 title "Modified <scp>U‐Net</scp> for cytological medical image segmentation" @default.
- W4223589738 cites W1885185971 @default.
- W4223589738 cites W1901129140 @default.
- W4223589738 cites W1936750108 @default.
- W4223589738 cites W1982168774 @default.
- W4223589738 cites W2075274603 @default.
- W4223589738 cites W2145305441 @default.
- W4223589738 cites W2150769593 @default.
- W4223589738 cites W2464708700 @default.
- W4223589738 cites W2535388113 @default.
- W4223589738 cites W2559597482 @default.
- W4223589738 cites W2592929672 @default.
- W4223589738 cites W2752238301 @default.
- W4223589738 cites W2901615768 @default.
- W4223589738 cites W2940612399 @default.
- W4223589738 cites W2986235590 @default.
- W4223589738 cites W3006036315 @default.
- W4223589738 cites W3016758910 @default.
- W4223589738 cites W3033274352 @default.
- W4223589738 cites W3035268411 @default.
- W4223589738 cites W3046665090 @default.
- W4223589738 cites W3048451585 @default.
- W4223589738 cites W3105129065 @default.
- W4223589738 cites W3139489160 @default.
- W4223589738 cites W3155526927 @default.
- W4223589738 cites W3202985326 @default.
- W4223589738 cites W3208778761 @default.
- W4223589738 cites W3209062824 @default.
- W4223589738 cites W3212240274 @default.
- W4223589738 cites W4233575000 @default.
- W4223589738 cites W4254428206 @default.
- W4223589738 doi "https://doi.org/10.1002/ima.22732" @default.
- W4223589738 hasPublicationYear "2022" @default.
- W4223589738 type Work @default.
- W4223589738 citedByCount "5" @default.
- W4223589738 countsByYear W42235897382023 @default.
- W4223589738 crossrefType "journal-article" @default.
- W4223589738 hasAuthorship W4223589738A5015997827 @default.
- W4223589738 hasAuthorship W4223589738A5044091224 @default.
- W4223589738 hasAuthorship W4223589738A5080981641 @default.
- W4223589738 hasConcept C11413529 @default.
- W4223589738 hasConcept C124504099 @default.
- W4223589738 hasConcept C13280743 @default.
- W4223589738 hasConcept C153180895 @default.
- W4223589738 hasConcept C154945302 @default.
- W4223589738 hasConcept C160633673 @default.
- W4223589738 hasConcept C174576160 @default.
- W4223589738 hasConcept C185798385 @default.
- W4223589738 hasConcept C205649164 @default.
- W4223589738 hasConcept C25694479 @default.
- W4223589738 hasConcept C31972630 @default.
- W4223589738 hasConcept C41008148 @default.
- W4223589738 hasConcept C65885262 @default.
- W4223589738 hasConcept C81363708 @default.
- W4223589738 hasConcept C89600930 @default.
- W4223589738 hasConceptScore W4223589738C11413529 @default.
- W4223589738 hasConceptScore W4223589738C124504099 @default.
- W4223589738 hasConceptScore W4223589738C13280743 @default.
- W4223589738 hasConceptScore W4223589738C153180895 @default.
- W4223589738 hasConceptScore W4223589738C154945302 @default.
- W4223589738 hasConceptScore W4223589738C160633673 @default.
- W4223589738 hasConceptScore W4223589738C174576160 @default.
- W4223589738 hasConceptScore W4223589738C185798385 @default.
- W4223589738 hasConceptScore W4223589738C205649164 @default.
- W4223589738 hasConceptScore W4223589738C25694479 @default.
- W4223589738 hasConceptScore W4223589738C31972630 @default.
- W4223589738 hasConceptScore W4223589738C41008148 @default.
- W4223589738 hasConceptScore W4223589738C65885262 @default.
- W4223589738 hasConceptScore W4223589738C81363708 @default.
- W4223589738 hasConceptScore W4223589738C89600930 @default.
- W4223589738 hasIssue "5" @default.
- W4223589738 hasLocation W42235897381 @default.
- W4223589738 hasOpenAccess W4223589738 @default.
- W4223589738 hasPrimaryLocation W42235897381 @default.
- W4223589738 hasRelatedWork W1999008862 @default.
- W4223589738 hasRelatedWork W2103507220 @default.
- W4223589738 hasRelatedWork W2185902295 @default.
- W4223589738 hasRelatedWork W2371519352 @default.
- W4223589738 hasRelatedWork W2386644571 @default.
- W4223589738 hasRelatedWork W2551987074 @default.
- W4223589738 hasRelatedWork W2785294226 @default.
- W4223589738 hasRelatedWork W2945274617 @default.
- W4223589738 hasRelatedWork W3144569342 @default.
- W4223589738 hasRelatedWork W4205800335 @default.
- W4223589738 hasVolume "32" @default.
- W4223589738 isParatext "false" @default.
- W4223589738 isRetracted "false" @default.
- W4223589738 workType "article" @default.