Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223599451> ?p ?o ?g. }
- W4223599451 endingPage "436" @default.
- W4223599451 startingPage "427" @default.
- W4223599451 abstract "In this study, the prediction of dynamic viscosity (µnf) of MWCNT-Al2O3 (30:70)/ Oil 5W50 hybrid nano-lubricant using Artificial Neural Network (ANN) is performed. The objective of the present research is to investigate the effect of temperature and solid volume fraction (SVF) to predict the shear rates (SR) and µnf using ANN. The feed-forward ANN consists of a multilayer perceptron network (MLP), which is capable of predicting µnf in connection with experimental data of temperature, SR and SVF. Sensitivity analysis is used to evaluate the importance and role of temperature, SR, and SVF in experimental µnf variations. ANN is generated and tested with experimental data sets and the results show that there was a good agreement between the actual and predicted ANN values. Moreover, the results of ANN simulation are compared with other data processing methods such as Support Vector Machine (SVM), Partial Least Squares (PLS), Principal Component Regression. In addition, the results of the residual value of ANN with seven neurons for µnf can be very small and close to the expected normal value. From this, it can be concluded that the given model can expect exact values." @default.
- W4223599451 created "2022-04-15" @default.
- W4223599451 creator A5015389811 @default.
- W4223599451 creator A5018655135 @default.
- W4223599451 creator A5041021508 @default.
- W4223599451 creator A5066462939 @default.
- W4223599451 creator A5073601146 @default.
- W4223599451 creator A5078886414 @default.
- W4223599451 creator A5081292792 @default.
- W4223599451 date "2022-09-01" @default.
- W4223599451 modified "2023-09-30" @default.
- W4223599451 title "Prediction the dynamic viscosity of MWCNT-Al2O3 (30:70)/ Oil 5W50 hybrid nano-lubricant using Principal Component Analysis (PCA) with Artificial Neural Network (ANN)" @default.
- W4223599451 cites W1998837080 @default.
- W4223599451 cites W2002471263 @default.
- W4223599451 cites W2007938137 @default.
- W4223599451 cites W2008513031 @default.
- W4223599451 cites W2011339767 @default.
- W4223599451 cites W2012687403 @default.
- W4223599451 cites W2077488940 @default.
- W4223599451 cites W2094986404 @default.
- W4223599451 cites W2172087806 @default.
- W4223599451 cites W2313348827 @default.
- W4223599451 cites W2322699768 @default.
- W4223599451 cites W2356040072 @default.
- W4223599451 cites W2522380928 @default.
- W4223599451 cites W2588276810 @default.
- W4223599451 cites W2598896050 @default.
- W4223599451 cites W2765692230 @default.
- W4223599451 cites W2914039583 @default.
- W4223599451 cites W2940293473 @default.
- W4223599451 cites W2942703025 @default.
- W4223599451 cites W2945723488 @default.
- W4223599451 cites W2946902242 @default.
- W4223599451 cites W2963648130 @default.
- W4223599451 cites W2964684313 @default.
- W4223599451 cites W2994818485 @default.
- W4223599451 cites W2997947294 @default.
- W4223599451 cites W2999780801 @default.
- W4223599451 cites W3004988188 @default.
- W4223599451 cites W3010079172 @default.
- W4223599451 cites W3026166904 @default.
- W4223599451 cites W3083531115 @default.
- W4223599451 cites W3092168922 @default.
- W4223599451 cites W3107310717 @default.
- W4223599451 cites W3117489638 @default.
- W4223599451 cites W3130169125 @default.
- W4223599451 cites W3141742061 @default.
- W4223599451 cites W3162972814 @default.
- W4223599451 cites W3198822478 @default.
- W4223599451 cites W3199001314 @default.
- W4223599451 cites W3205952217 @default.
- W4223599451 cites W3208703006 @default.
- W4223599451 cites W4200134980 @default.
- W4223599451 cites W4200582501 @default.
- W4223599451 cites W4200622567 @default.
- W4223599451 cites W4214699672 @default.
- W4223599451 cites W998874852 @default.
- W4223599451 doi "https://doi.org/10.1016/j.eij.2022.03.004" @default.
- W4223599451 hasPublicationYear "2022" @default.
- W4223599451 type Work @default.
- W4223599451 citedByCount "10" @default.
- W4223599451 countsByYear W42235994512022 @default.
- W4223599451 countsByYear W42235994512023 @default.
- W4223599451 crossrefType "journal-article" @default.
- W4223599451 hasAuthorship W4223599451A5015389811 @default.
- W4223599451 hasAuthorship W4223599451A5018655135 @default.
- W4223599451 hasAuthorship W4223599451A5041021508 @default.
- W4223599451 hasAuthorship W4223599451A5066462939 @default.
- W4223599451 hasAuthorship W4223599451A5073601146 @default.
- W4223599451 hasAuthorship W4223599451A5078886414 @default.
- W4223599451 hasAuthorship W4223599451A5081292792 @default.
- W4223599451 hasBestOaLocation W42235994511 @default.
- W4223599451 hasConcept C11413529 @default.
- W4223599451 hasConcept C12267149 @default.
- W4223599451 hasConcept C127172972 @default.
- W4223599451 hasConcept C145828037 @default.
- W4223599451 hasConcept C153180895 @default.
- W4223599451 hasConcept C154945302 @default.
- W4223599451 hasConcept C155512373 @default.
- W4223599451 hasConcept C159985019 @default.
- W4223599451 hasConcept C179717631 @default.
- W4223599451 hasConcept C186060115 @default.
- W4223599451 hasConcept C192562407 @default.
- W4223599451 hasConcept C27438332 @default.
- W4223599451 hasConcept C2780874159 @default.
- W4223599451 hasConcept C41008148 @default.
- W4223599451 hasConcept C50644808 @default.
- W4223599451 hasConcept C60908668 @default.
- W4223599451 hasConcept C86803240 @default.
- W4223599451 hasConceptScore W4223599451C11413529 @default.
- W4223599451 hasConceptScore W4223599451C12267149 @default.
- W4223599451 hasConceptScore W4223599451C127172972 @default.
- W4223599451 hasConceptScore W4223599451C145828037 @default.
- W4223599451 hasConceptScore W4223599451C153180895 @default.
- W4223599451 hasConceptScore W4223599451C154945302 @default.
- W4223599451 hasConceptScore W4223599451C155512373 @default.
- W4223599451 hasConceptScore W4223599451C159985019 @default.
- W4223599451 hasConceptScore W4223599451C179717631 @default.