Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223627470> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4223627470 endingPage "100161" @default.
- W4223627470 startingPage "100161" @default.
- W4223627470 abstract "Probabilistic neural network is a variant of feedforward neural network models and has been successfully applied for various pattern classification purposes. Unlike other feedforward neural network models, probabilistic neural network, a type of radial basis function network models, has essentially only two types of the network-parameters to choose in advance, i.e. the locations of the centers and a single value of radius; a central issue relevant to the application of probabilistic neural network is therefore to determine an appropriate number of the centers accommodated within the network. In the original probabilistic neural network framework, all the training data are allocated to the respective centroid vectors, and thus the network size generally tends to be large, resulting in demanding computational resource. To alleviate this problem, clustering algorithms are commonly employed to shrink the size of the training data. In this work, reduction in the number of centers in a probabilistic neural network is addressed, via the utility of first neighbor means clustering algorithm that is non-iterative and requires only a single algorithmic hyper-parameter; such a choice is desirable in practice. Simulation results using seven publicly available databases for pattern classification tasks show that the first neighbor means clustering algorithm can yield a relatively compact-sized network within short computation time, while exhibiting a reasonably high classification performance, in comparison with communication with local agents, k-means, orthogonal least squares, resource allocating network, and resource vector machine algorithms." @default.
- W4223627470 created "2022-04-15" @default.
- W4223627470 creator A5005459134 @default.
- W4223627470 date "2022-07-01" @default.
- W4223627470 modified "2023-10-18" @default.
- W4223627470 title "Reducing the number of centers in a probabilistic neural network via applying the first neighbor means clustering algorithm" @default.
- W4223627470 cites W1964168965 @default.
- W4223627470 cites W2137442237 @default.
- W4223627470 cites W2140710093 @default.
- W4223627470 cites W2141807666 @default.
- W4223627470 cites W2155399784 @default.
- W4223627470 cites W2611477785 @default.
- W4223627470 cites W3000347898 @default.
- W4223627470 cites W4239510810 @default.
- W4223627470 doi "https://doi.org/10.1016/j.array.2022.100161" @default.
- W4223627470 hasPublicationYear "2022" @default.
- W4223627470 type Work @default.
- W4223627470 citedByCount "2" @default.
- W4223627470 countsByYear W42236274702022 @default.
- W4223627470 crossrefType "journal-article" @default.
- W4223627470 hasAuthorship W4223627470A5005459134 @default.
- W4223627470 hasBestOaLocation W42236274701 @default.
- W4223627470 hasConcept C11413529 @default.
- W4223627470 hasConcept C119857082 @default.
- W4223627470 hasConcept C124101348 @default.
- W4223627470 hasConcept C134342201 @default.
- W4223627470 hasConcept C154945302 @default.
- W4223627470 hasConcept C175202392 @default.
- W4223627470 hasConcept C41008148 @default.
- W4223627470 hasConcept C47702885 @default.
- W4223627470 hasConcept C49937458 @default.
- W4223627470 hasConcept C50644808 @default.
- W4223627470 hasConcept C73555534 @default.
- W4223627470 hasConceptScore W4223627470C11413529 @default.
- W4223627470 hasConceptScore W4223627470C119857082 @default.
- W4223627470 hasConceptScore W4223627470C124101348 @default.
- W4223627470 hasConceptScore W4223627470C134342201 @default.
- W4223627470 hasConceptScore W4223627470C154945302 @default.
- W4223627470 hasConceptScore W4223627470C175202392 @default.
- W4223627470 hasConceptScore W4223627470C41008148 @default.
- W4223627470 hasConceptScore W4223627470C47702885 @default.
- W4223627470 hasConceptScore W4223627470C49937458 @default.
- W4223627470 hasConceptScore W4223627470C50644808 @default.
- W4223627470 hasConceptScore W4223627470C73555534 @default.
- W4223627470 hasLocation W42236274701 @default.
- W4223627470 hasOpenAccess W4223627470 @default.
- W4223627470 hasPrimaryLocation W42236274701 @default.
- W4223627470 hasRelatedWork W1595652908 @default.
- W4223627470 hasRelatedWork W2014323024 @default.
- W4223627470 hasRelatedWork W2067837718 @default.
- W4223627470 hasRelatedWork W2086999410 @default.
- W4223627470 hasRelatedWork W2114473615 @default.
- W4223627470 hasRelatedWork W2357447513 @default.
- W4223627470 hasRelatedWork W2381770184 @default.
- W4223627470 hasRelatedWork W2390775476 @default.
- W4223627470 hasRelatedWork W2950917560 @default.
- W4223627470 hasRelatedWork W3177279640 @default.
- W4223627470 hasVolume "14" @default.
- W4223627470 isParatext "false" @default.
- W4223627470 isRetracted "false" @default.
- W4223627470 workType "article" @default.