Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223642813> ?p ?o ?g. }
- W4223642813 abstract "Various computational analysis systems based on machine learning (ML) methods have been established for the analysis of steel industrial data. However, limited by the extensibility of one regression strategy, it is difficult to obtain a generic property prediction model for multiple types of steels. To solve this problem, this study proposes a novel industrial big data analysis system that combines ML classification and regression models with key physical metallurgy (PM) variables. First, the database is obtained from an industrial production line and carefully preprocessed. Then, multiple types of steels are categorized into five classes using a K‐nearest neighbor (KNN) algorithm, and suitable ML algorithms are selected for each category to maximize the performance. Considering the role of PM variables in improving the model accuracy, some relevant parameters (the A c1 temperature, A c3 temperature, and flow stress) are introduced to guide the further optimization of the ML process. The proposed industrial analysis system has more accurate prediction and higher flexibility than the model that directly uses the original dataset. With a rational combination of different regression strategies, the present results clearly demonstrate that the extensibility of the proposed property prediction model is significantly improved for industrial big data." @default.
- W4223642813 created "2022-04-15" @default.
- W4223642813 creator A5000323161 @default.
- W4223642813 creator A5008659088 @default.
- W4223642813 creator A5012752139 @default.
- W4223642813 creator A5046238570 @default.
- W4223642813 creator A5055869768 @default.
- W4223642813 creator A5062089359 @default.
- W4223642813 creator A5062460876 @default.
- W4223642813 creator A5080382748 @default.
- W4223642813 date "2022-04-14" @default.
- W4223642813 modified "2023-10-15" @default.
- W4223642813 title "Physical Metallurgy Guided Industrial Big Data Analysis System with Data Classification and Property Prediction" @default.
- W4223642813 cites W1963999076 @default.
- W4223642813 cites W1969282561 @default.
- W4223642813 cites W1997269034 @default.
- W4223642813 cites W2012771827 @default.
- W4223642813 cites W2042958981 @default.
- W4223642813 cites W2056287663 @default.
- W4223642813 cites W2056579834 @default.
- W4223642813 cites W2058175355 @default.
- W4223642813 cites W2078724835 @default.
- W4223642813 cites W2092022777 @default.
- W4223642813 cites W2111936491 @default.
- W4223642813 cites W2338318698 @default.
- W4223642813 cites W2520058492 @default.
- W4223642813 cites W2562449979 @default.
- W4223642813 cites W2737099819 @default.
- W4223642813 cites W2768928862 @default.
- W4223642813 cites W2794291692 @default.
- W4223642813 cites W2801492008 @default.
- W4223642813 cites W2807918377 @default.
- W4223642813 cites W2811481367 @default.
- W4223642813 cites W2910813586 @default.
- W4223642813 cites W2920028387 @default.
- W4223642813 cites W2945701190 @default.
- W4223642813 cites W2969389191 @default.
- W4223642813 cites W2969465322 @default.
- W4223642813 cites W2988284539 @default.
- W4223642813 cites W3024266484 @default.
- W4223642813 cites W3033716081 @default.
- W4223642813 cites W3042357493 @default.
- W4223642813 cites W3091246668 @default.
- W4223642813 cites W3106917740 @default.
- W4223642813 cites W3157186241 @default.
- W4223642813 cites W3207064539 @default.
- W4223642813 cites W3209059351 @default.
- W4223642813 cites W3216784417 @default.
- W4223642813 cites W4207022202 @default.
- W4223642813 doi "https://doi.org/10.1002/srin.202100820" @default.
- W4223642813 hasPublicationYear "2022" @default.
- W4223642813 type Work @default.
- W4223642813 citedByCount "3" @default.
- W4223642813 countsByYear W42236428132022 @default.
- W4223642813 countsByYear W42236428132023 @default.
- W4223642813 crossrefType "journal-article" @default.
- W4223642813 hasAuthorship W4223642813A5000323161 @default.
- W4223642813 hasAuthorship W4223642813A5008659088 @default.
- W4223642813 hasAuthorship W4223642813A5012752139 @default.
- W4223642813 hasAuthorship W4223642813A5046238570 @default.
- W4223642813 hasAuthorship W4223642813A5055869768 @default.
- W4223642813 hasAuthorship W4223642813A5062089359 @default.
- W4223642813 hasAuthorship W4223642813A5062460876 @default.
- W4223642813 hasAuthorship W4223642813A5080382748 @default.
- W4223642813 hasConcept C105795698 @default.
- W4223642813 hasConcept C111472728 @default.
- W4223642813 hasConcept C111919701 @default.
- W4223642813 hasConcept C113238511 @default.
- W4223642813 hasConcept C119857082 @default.
- W4223642813 hasConcept C124101348 @default.
- W4223642813 hasConcept C138885662 @default.
- W4223642813 hasConcept C152877465 @default.
- W4223642813 hasConcept C154945302 @default.
- W4223642813 hasConcept C189950617 @default.
- W4223642813 hasConcept C2780598303 @default.
- W4223642813 hasConcept C32833848 @default.
- W4223642813 hasConcept C33923547 @default.
- W4223642813 hasConcept C41008148 @default.
- W4223642813 hasConcept C48921125 @default.
- W4223642813 hasConcept C75684735 @default.
- W4223642813 hasConcept C83546350 @default.
- W4223642813 hasConcept C98045186 @default.
- W4223642813 hasConceptScore W4223642813C105795698 @default.
- W4223642813 hasConceptScore W4223642813C111472728 @default.
- W4223642813 hasConceptScore W4223642813C111919701 @default.
- W4223642813 hasConceptScore W4223642813C113238511 @default.
- W4223642813 hasConceptScore W4223642813C119857082 @default.
- W4223642813 hasConceptScore W4223642813C124101348 @default.
- W4223642813 hasConceptScore W4223642813C138885662 @default.
- W4223642813 hasConceptScore W4223642813C152877465 @default.
- W4223642813 hasConceptScore W4223642813C154945302 @default.
- W4223642813 hasConceptScore W4223642813C189950617 @default.
- W4223642813 hasConceptScore W4223642813C2780598303 @default.
- W4223642813 hasConceptScore W4223642813C32833848 @default.
- W4223642813 hasConceptScore W4223642813C33923547 @default.
- W4223642813 hasConceptScore W4223642813C41008148 @default.
- W4223642813 hasConceptScore W4223642813C48921125 @default.
- W4223642813 hasConceptScore W4223642813C75684735 @default.
- W4223642813 hasConceptScore W4223642813C83546350 @default.
- W4223642813 hasConceptScore W4223642813C98045186 @default.